Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Релеевское рассеяние

Принцип работы оптического рефлектометра

Способы применения оптических рефлектометров

Оптические рефлектометры широко применяются на всех этапах создания и эксплуатации волоконно-оптической сети – от сооружения до технического обслуживания‚ определения мест повреждений и их исправления. Оптический рефлектометр применяется для того‚ чтобы:

· Измерять полные потери в волокне для приемки сети и ее ввода в строй‚ для проверки волокна на барабанах и подтверждения его технических характеристик.

· Измерять потери как в механических‚ так и в сварных соединениях (оптоволоконных стыках) во время монтажа‚ строительства и ремонтных работ.

· Измерять отражение‚ или оптические потери на отражение на оптических разъемах и механических соединениях (оптоволоконных стыках) для CATV (сетей кабельного телевидения)‚ SDH (СЦИ) и других аналоговых или высокоскоростных линий цифровой связи‚ в которых отражение должно поддерживаться на низком уровне.

· Определять место обрывов и дефектов волокон.

· Проверять‚ оптимальна ли оптическая соосность волокон при операциях по их сращиванию.

· Обнаруживать постепенное или внезапное ухудшение качества волокна путем сравнения его характеристики с зафиксированными результатами ранее проведенного тестирования.

 

Для измерения характеристик оптического волокна оптический рефлектометр использует явления релеевского рассеяния и френелевского отражения. Посылая в волокно световой импульс и измеряя время его распространения и интенсивность его отражения от точек‚ находящихся внутри волокна‚ рефлектометр выводит на экран дисплея рефлектограмму «уровень отраженного сигнала в зависимости от расстояния».
Рефлектограмму можно проанализировать на месте‚ немедленно распечатать для создания документации о сети или сохранить на диске компьютера для более позднего анализа и сопоставлений. По такой рефлектограмме опытный оператор может точно определить конец волокна‚ местонахождение оптоволоконных стыков и потери в них‚ а также полные потери в волокне. В большинстве последних моделей рефлектометров предусмотрена возможность автоматического анализа полученных рефлектограмм‚ что упрощает обучение операторов.

При посылке светового импульса по волокну часть импульса натыкается на имеющиеся в стекле микроскопические частицы (которые называются «примесью») и рассеивается во всех направлениях. Это явление называется релеевским рассеянием. Часть световой энергии – около 0‚0001% – рассеивается назад‚ в направлении‚ противоположном направлению распространения импульса; это называется обратным рассеянием.
Поскольку в процессе изготовления волокна примеси распределяются равномерно по всему волокну‚ это явление рассеяния возникает по всей его длине.



Рисунок 2. Релеевское рассеяние

 

Релеевское рассеяние – это основная причина потерь‚ имеющих место в волокне. На более длинных световых волнах рассеяние меньше‚ чем на более коротких. Так например‚ свет на 1550 нм теряет из-за релеевского рассеяния от 0‚2 до 0‚3 дБ на километр (дБ/км)‚ в то время как на 850 нм – от 4‚0 до 6‚0 дБ/км. Имеющие более высокую плотность примеси также увеличивают рассеяние и‚ следовательно‚ повышают уровень удельного затухания. Оптический рефлектометр может измерять уровни обратного рассеяния с большой точностью‚ используя эту способность для выявления незначительных изменений характеристик волокна в любой его точке.
Релеевское рассеяние похоже на рассеивание частицами влаги луча света от карманного фонарика в ночном тумане. В густом тумане рассеивание будет сильнее‚ так как в воздухе больше частиц влаги. Туман вы видите потому‚ что частицы влаги рассеивают небольшое количество света по направлению к вам. Если туман не очень густой‚ то луч света может распространяться на большое расстояние‚ но в густом тумане свет из-за эффекта рассеяния затухает довольно быстро. Частицы примесей в волокне действуют как частицы влаги в тумане‚ отражая‚ при попадании на них света‚ небольшое количество световой энергии назад‚ к ее источнику.

<== предыдущая лекция | следующая лекция ==>
| Релеевское рассеяние

Дата добавления: 2014-01-05; Просмотров: 2; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.162.107.122
Генерация страницы за: 0.005 сек.