КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя. В методе Якоби на (k +1)-ой итерации значения x
x x x x
Формулы (3.36) являются расчетными формулами метода Зейделя. Введем нижнюю и верхнюю треугольные матрицы:
b 21 0 0 … 0 0 0 b 23 … b 2 n B 1 = b 31 b 32 0 … 0 и B 2 = 0 0 0 … b 3 n. bn 1 bn 2 bn 3 … 0 0 0 0 … 0
Матричная запись расчетных формул (3.36) имеет вид: x k+ 1 = B 1 x k+ 1 + B 2 x k + c. (3.37) Так как B = B 1 + B 2, точное решение x * исходной системы удовлетворяет равенству: x * = B 1 x * + B 2 x * + c. (3.38) Сходимость метода Зейделя. Достаточным условием сходимости метода Зейделя является выполнение неравенства: b = max | bij |, < 1, i, j = 1, 2, …, n. (3.39) Неравенство (3.39) означает, что для сходимости метода Зейделя достаточно, чтобы максимальный по модулю элемент матрицы B был меньше единицы. Если выполнено условие (3.39), то справедлива следующая апостериорная оценка погрешности: max| x где b – максимальный элемент матрицы B, b 2 – максимальный элемент матрицы B 2. Правую часть оценки (3.40) легко вычислить после нахождения очередного приближения. Критерий окончания. Если требуется найти решение с точностью e, то в силу (3.37) итерационный процесс следует закончить как только на (k+ 1)-ом шаге выполнится неравенство:
Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство max| x где e 1 = Если выполняется условие b £ max| x Метод Зейделя как правило сходится быстрее, чем метод Якоби. Однако возможны ситуации, когда метод Якоби сходится, а метод Зейделя сходится медленнее или вообще расходится. Пример 3.6. Применим метод Зейделя для решения системы уравнений (3.33) из примера 3.5. Первые шаги полностью совпадают с процедурой решения по методу Якоби, а именно: система приводится к виду (3.34), затем в качестве начального приближения выбираются элементы столбца свободных членов (3.35). Проведем теперь итерации методом Зейделя. При k = 1 x При вычислении x x При вычислении x x При вычислении x x Аналогичным образом проведем вычисления при k = 2 и k = 3. Получим: при k = 2 x при k = 3 x Известны точные значения переменных: x 1 = 0.8, x 2 = 1.0, x 3 = 1.2, x 4 = 1.4. Сравнение с примером 3.5 показывает, что метод Зейделя сходится быстрее и дает более точный результат.
Дата добавления: 2014-01-05; Просмотров: 624; Нарушение авторских прав?; Мы поможем в написании вашей работы! |