Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принципы Дж. фон Неймана




 

Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств.

Компонентами архитектуры компьютера являются: вычислительные и логические возможности, аппаратные средства и программное обеспечение.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые типичные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать его описание на любом уровне детализации.

Архитектуру компьютера следует отличать от его структуры. Структура определяет конкретный набор устройств, блоков, узлов, входящих в состав компьютера, тогда как архитектура определяет правила взаимодействия составных частей компьютера.

Принципы (архитектура) фон Неймана. В основу построения большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Структура отдельной команды имеет вид:

<код операции> <операнды>,

где <код операции> определяет, какая операция должна выполняться;

<операнды> - список (возможно, одноэлементный) тех констант, адресов или имен переменных, над которыми выполняется данная операция.

В зависимости от числа операндов различают одно-, двух- и трехадресные машинные команды. Каждая команда имеет определенный объем, измеряемый байтами.

2. Принцип условного перехода. Если после выполнения команды следует перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов (ветвления), которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

4. Принцип размещения программы в памяти. Программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой.

5. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

6. Принцип иерархии памяти. Память ЭВМ неоднородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия.

7. Принцип двоичной системы счисления. Для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Существуют и другие классы компьютеров, принципиально отличающиеся от фон-неймановских. Здесь, например, может не выполняться принцип программного управления, т.е. они могут работать без счетчика (регистра адреса) команд, указывающего на выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими.

Машина фон Неймана состояла из памяти, представлявшей собой набор регистров, АЛУ, устройства ввода-вывода и устройства управления (рис. 3.7).

Устройство ввода передавало команды и данные в АЛУ, откуда они записывались в память. Все команды, совокупность которых называется программой, записываются в память в соседние ячейки по возрастанию их адресов, а данные, которые требуют обработки, - в ячейки с произвольными адресами. Последняя команда программы - это обязательно команда остановки работы. Каждая команда содержит код операции, которую необходимо выполнить, и адреса ячеек, в которых находятся данные, обрабатываемые этой командой. Устройство управления содержит специальный регистр, который называется «Счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. После чего вычислительная машина переходит в режим автоматического выполнения программы.

 

Рис. 3.7. Машина фон Неймана

 

Устройство управления считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство - «Регистр команд». Регистр команд хранит команду во время ее исполнения. Устройство управления расшифровывает тип операции команды, считывает из памяти данные, адреса которых указаны в команде, и приступает к ее выполнению. Для каждой команды устройство управления имеет свой алгоритм обработки, который заключается в выработке управляющих сигналов для всех остальных устройств машины. Этот алгоритм мог быть реализован на основе комбинационных логических схем или с помощью специальной внутренней памяти, куда эти алгоритмы были записаны в виде микрокоманд, объединенных в микропрограммы. Выполнение микропрограммы происходит по тому же принципу, что и программы в основной памяти, т.е. по принципу фон Неймана. Каждая микрокоманда содержит набор управляющих сигналов для устройств машины. Отметим, что устройства управления выполнением команд процессоров в современных компьютерных системах также строятся по принципу комбинационных схем или микропрограммных автоматов, в соответствии с чем делятся на RISC и CISC процессоры, о которых будет рассказано ниже.

Микропрограмма выполнения любой команды обязательно содержит сигналы, изменяющие содержимого счетчика команд на единицу. Таким образом, после завершения выполнения очередной команды, счетчик команд указывал на следующую ячейку памяти, в которой находилась следующая команда программы. Устройство управления читает команду, адрес которой находится в счетчике команд, помещает ее в регистр команд и т.д. Этот процесс продолжается до тех пор, пока очередная исполняемая команда не оказывается командой останова исполнения программы. Интересно отметить, что и команды, и данные, находящиеся в памяти, представляют собой целочисленные двоичные наборы. Отличить команду от данных устройство управления не может, поэтому, если программист забыл закончить программу командой останова, устройство управления читает следующие ячейки памяти, в которых уже нет команд программы, и пытается интерпретировать их как команды.

Особым случаем можно считать команды безусловного или условного перехода, когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов. В этом случае команда перехода содержит адрес ячейки, куда требуется передать управление. Этот адрес записывается устройством управления непосредственно в счетчик команд и происходит переход на соответствующую команду программы.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 5406; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.