Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Преимущества и недостатки микроядерной архитектуры




Высокая степень переносимости обусловлена тем, что весь машинно-зависимый код изолирован в микроядре, поэтому для переноса системы на новый процессор требуется меньше изменений, и все они логически сгруппированы вместе.

Расширяемость присуща микроядерной ОС в очень высокой степени. В традиционных системах даже при наличии многослойной структуры нелегко удалить один слой и поменять его на другой по причине множественности и размытости интерфейсов между слоями. Добавление новых функций и изменение существующих требуют хорошего знания операционной системы и больших затрат времени. Добавление новой подсистемы требует разработки нового приложения, что никак не затрагивает целостность микроядра. Микроядерная структура позволяет не только добавлять, но и сокращать число компонентов операционной системы, что также бывает очень полезно. При микроядерном подходе конфигурируемость ОС не вызывает никаких проблем и не требует особых мер  достаточно изменить файл с настройками начальной конфигурации системы или же остановить не нужные больше серверы в ходе работы обычными для остановки приложений средствами.

Использование микроядерной модели повышает надежность ОС. Каждый сервер выполняется в виде отдельного процесса в своей собственной области памяти и таким образом защищен от других серверов операционной системы, что не наблюдается в традиционной ОС, где все модули ядра могут влиять друг на друга. И если отдельный сервер терпит крах, то он может быть перезапущен без останова или повреждения остальных серверов ОС. Более того, поскольку серверы выполняются в пользовательском режиме, они не имеют непосредственного доступа к аппаратуре и не могут модифицировать память, в которой хранится и работает микроядро. Другим потенциальным источником повышения надежности ОС является уменьшенный объем кода микроядра по сравнению с традиционным ядром  это снижает вероятность появления ошибок программирования.

Модель с микроядром хорошо подходит для поддержки распределенных вычислений, так как использует механизмы, аналогичные сетевым: взаимодействие клиентов и серверов путем обмена сообщениями. Серверы микроядерной ОС могут работать как на одном, так и на разных компьютерах. В этом случае при получении сообщения от приложения микроядро может обработать его самостоятельно и передать локальному серверу или же переслать по сети микроядру, работающему на другом компьютере. Переход к распределенной обработке требует минимальных изменений в работе операционной системы просто локальный транспорт заменяется на сетевой.

 

Рис. 1.8. Обработка системного вызова в микроядерной архитектуре

Производительность. При классической организации ОС выполнение системного вызова сопровождается двумя переключениями режимов, а при микроядерной организации (рис. 1,8 )  четырьмя. Таким образом, операционная система на основе микроядра при прочих равных условиях всегда будет менее производительной, чем ОС с классическим ядром.

Серьезность этого недостатка хорошо иллюстрирует история развития Windows NT. В версиях 3. 1 и 3. 5 диспетчер окон, графическая библиотека и высокоуровневые драйверы графических устройств входили в состав сервера пользователь­ского режима, и вызов функций этих модулей осуществлялся в соответствии с микроядерной схемой. Однако очень скоро разработчики Windows NT поняли, что такой механизм обращений к часто используемым функциям графического интерфейса существенно замедляет работу приложений и делает данную опера­ционную систему уязвимой в условиях острой конкуренции. В результате в вер­сию Windows NT 4.0 были внесены существенные изменения  все перечислен­ные выше модули были перенесены в ядро, что отдалило эту ОС от идеальной микроядерной архитектуры, но зато резко повысило ее производительность.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 257; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.