КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Страничная организация
Страничная организация виртуальной памяти В большинстве современных операционных систем виртуальная память организуется с помощью страничной адресации. Оперативная память делится на страницы: области памяти фиксированной длины (например, 4096 байт), которые являются минимальной единицей выделяемой памяти (то есть даже запрос на 1 байт от приложения приведёт к выделению ему страницы памяти). Процесс обращается к памяти с помощью адреса виртуальной памяти, который содержит в себе номер страницы и смещение внутри страницы. Процессор преобразует номер виртуальной страницы в адрес соответствующей ей физической страницы при помощи буфера ассоциативной трансляции. Если ему не удалось это сделать, то требуется обращение к таблице страниц (так называемый Page Walk), что может сделать либо сам процессор, либо операционная система (в зависимости от архитектуры).
(слайд №12)
Рис. 16.4. Пример страничной организации. Страничная организация (paging) – стратегия управления памятью, при которой: · логическая память делится на страницы – смежные области одинаковой длины, обычно – степень 2 (например, 512 слов); · физическая память, соответственно, делится на фреймы такого же размера; · распределение логической памяти происходит с точностью до страницы; · физическая память процесса может не быть непрерывной; · связь между логической и физической памятью процесса осуществляется с помощью таблицы страниц – системной структуры, выделяемой процессу для трансляции его логических адресов в физические. При страничной организации ОС хранит информацию обо всех свободных фреймах. Поскольку память выделяется с точностью до страницы, возможна внутренняя фрагментация. Цели страничной организации – обеспечить возможность не смежного распределения физической памяти для процессов, а также расширить пространство логической памяти. На рис. 16.4 приведен пример страничной организации, который демонстрирует, что, в отличие от непрерывной логической памяти процесса, соответствующие фреймы страниц в основной памяти могут быть расположены не смежно: логической странице 0 соответствует фрейм 1, странице 1 – фрейм 4, странице 2 – фрейм 3, странице 3 – фрейм 7.
(слайд №13)
Рис. 16.5. Пример страничной организации блоками по 4 страницы.
На рис. 16.5 приведен другой возможный пример страничной организации: логическая и физическая память разбита на блоки по 4 страницы подряд; в таблице страниц хранится не номер страницы, а номер блока страниц. Например, в элементе 0 таблицы страниц хранится номер блока 5, по которому адрес начала блока вычисляется домножением содержимого элемента таблицы страниц на размер блока, равный 4 (результат – 20).
Реализация таблицы страниц Использование ассоциативной памяти. Таблица страниц – непрерывная область физической памяти. В системе имеется базовый регистр таблицы страниц (page table base register – PTBR), указывающий на таблицу страниц и хранящий ее длину. Таким образом, при страничной организации любой доступ к памяти требует фактически не одного, а двух обращений в память – одно в таблицу страниц, другое – непосредственно к данным или команде. В этом – некоторый недостаток и неэффективность страничной организации, по сравнению с более простыми методами управления памятью. (слайд №14)
Рис. 16.3. Архитектура трансляции адресов при страничной организации.
При страничной организации логический адрес обрабатывается системой особым образом – как структура (p, d): его старшие разряды обозначают номер страницы, младшие – смещение внутри страницы. Номер страницы (p) трактуется как индекс в таблице страниц, соответствующий элемент которой содержит базовый адрес начала страницы в физической памяти. Смещение внутри страницы (d) добавляется к ее базовому адресу. В результате формируется физический адрес, передаваемый в устройство управления памятью. Архитектура трансляции адресов при страничной организации изображена на рис. 16.3.
(слайд №15) Рис. 16.7. Схема трансляции адресов с использованием ассоциативной памяти.
Проблема двух обращений решается введением ассоциативной памяти (cache) страниц, называемой также буфер трансляции адресов (translation lookaside buffer – TLB). Ассоциативная память, по существу, является ассоциативным списком пар вида: (номер страницы, номер фрейма). Ее быстродействие значительно выше, чем у основной памяти и у регистров. Схема трансляции адресов с использованием ассоциативной памяти изменяется: если номер страницы из логического адреса найден в ассоциативной памяти, то из ее элемента извлекается соответствующий номер фрейма. Если же номер страницы отсутствует в ассоциативной памяти, он выбирается обычным образом из таблицы страниц, но заносится в ассоциативную память. Таким образом, в ассоциативной памяти накапливается информация о наиболее часто используемых страницах. Модифицированная схема трансляции адресов с использованием TLB иллюстрируется рис. 16.7.
Дата добавления: 2014-01-05; Просмотров: 460; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |