Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические свойства

Читайте также:
  1. Арматура. Её основные физико-механические свойства. Арматурные изделия
  2. Влияние мышечной работы на морфологический состав крови и ее физико-химические свойства.
  3. Влияние отпуска на механические свойства сталей
  4. Вопрос 2. Гипербола, уравнение и свойства.
  5. Вопрос 2. Эллипс, уравнение и свойства.
  6. Вопрос 3. Парабола, уравнение и свойства.
  7. Другие оптические и оптико-механические приборы.
  8. Если причина имеет дополнительные свойства, то и следствие приобретает дополнительные свойства.
  9. Информация: ее виды и свойства. Меры информации
  10. Иррациональные числа и их свойства.
  11. Искусственные механические характеристики АД
  12. Искусственные электромеханические и механические характеристики ДПТ НВ. Режимы торможения ДПТ НВ



Механические свойства проявляются как способность материала сопротивляться всем видам внешних механических воздействий.

Механические воздействия характеризуют по направлению, длительности и области действия. По направлению механические воздействия можно рассматривать как линейные (растяжение и сжатие) и угловые (изгиб и кручение). По длительности их разделяют на статические и динамические, по области действия — на объемные и поверхностные.

Механические свойства определяют изменение формы, размеров и сплошности веществ и материалов при механических воздействиях, а следовательно, и результат практически любого механического воздействия на вещества и материалы, возникающего при их производстве и эксплуатации (использовании).

К основным механическим свойствам веществ и материалов относятся упругость, жесткость, эластичность, пластичность, прочность, хрупкость, вязкость и твердость.

Упругость — свойство материалов самопроизвольно восстанавливать свои форму и объем (твердые вещества) или только объем (жидкости и газы) при прекращении внешних воздействий. Упругость- обусловлена взаимодействием между атомами (молекулами) вещества и их тепловым движением.

В качестве меры способности материалов или изделий изменять размеры и форму при заданном типе нагрузки используются понятия «эластичность» и «жесткость».

Эластичность — способность материала или изделия претерпевать значительные изменения размеров и формы без разрушения при сравнительно небольшой действующей силе.

Жесткость — способность материала или изделия к меньшему изменению размерив и формы при заданном типе нагрузки. Чем больше жесткость, тем меньше изменения.

Эластичность — способность твердых материалов сохранять измененными форму и объем без микроскопических нарушений сплошности после снятия механических нагрузок, которые вызвали эти изменения.

Пластическая деформация связана с разрывом некоторых межатомных связей и образованием новых. Учет пластичности позволяет определять запасы прочности, деформируемости и устойчивости, расширяет возможности создания конструкций минимального веса.

Механическая прочность твердых веществ — свойство сопротивляться разрушению, разделению на части), а также необратимому изменению формы при механических воздействиях. Прочность твердых веществ обусловлена в конечном счете силами взаимодействия между составляющими их структурными единицами (атомами, ионами и др.).

Хрупкость — свойство твердых веществ разрушаться при механических воздействий без существенных предварительных изменений формы и объема.

Вязкость (внутреннее трение) — способность материалов сопротивляться действию внешних сил, вызывающему:



• в твердых веществах — распространение уже имеющейся острой трещины (разрушение);

• в жидкостях и газах — течение.

Твердость — свойство материалов оказывать сопротивление в поверхностном слое контактному воздействию (вдавливанию или царапанью). Особенность этого свойства заключается в том, что оно реализуется только в небольшом объеме вещества. Твердость — сложное свойство материала, отражающее одновременно его прочность и пластичность.

При отсутствии механических воздействий атомы в кристалле находятся в равновесных положениях. При механических воздействиях происходит деформация материального объекта.

Деформация — изменение взаимного расположения множества частиц вещества, которое приводит к изменению формы и размеров тела или его частей и вызывает изменение сил взаимодействия между ними. Деформируемыми являются все вещества.

Если приложить сжимающую нагрузку, то частицы строения вещества (например, атомы) будут сближаться до такого расстояния, при котором внутренние отталкивающие силы уравновесят внешние сжимающие силы. При растяжении расстояние между структурными частицами увеличивается до тех пор, пока силы притяжения не уравновесят внешнюю нагрузку.

В твердых веществах по механизму протекания различают упругую и пластическую деформации. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства материала устраняется после прекращения действия внешних сил, а пластической — такую часть деформации, которая остается после снятия нагрузки, необратимо изменяя структуру материала и его свойства.

Все реальные твердые вещества даже при малых деформациях обладают пластическими свойствами, что предопределяет смешанные механизмы протекания деформации — упругопластическую деформацию. Так, в различных деталях и конструкциях пластические деформации охватывают, как правило, небольшой объем материала, остальной — испытывает только упругие деформации. Если величина деформации явно зависит от времени, например возрастает при неизменной нагрузке, но обратима, она называется вязкоупругой.

Пластическая деформация в твердых веществах может осуществляться, например, скольжением, которое протекает в кристаллической решетке вещества по плоскостям и направлениям с наиболее плотной упаковкой атомов. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах, например, могут действовать одна или одновременно несколько систем скольжения.

Представление процесса скольжения как одновременного передвижения одной части кристалла относительно другой является чисто схематическим (рис), так как такое передвижение потребовало бы величин внешней нагрузки, в сотни и тысячи раз превышающих те, при которых процесс протекает в действительности.

 

В реальных материалах скольжение осуществляется как в результате перемещения дислокаций в одной плоскости скольжения, так и путем перехода на другие. Дислокации, движущиеся в деформированном кристаллическом веществе, порождают большое число дислоцированных атомов и вакансий.

Большая часть работы (до 95%), затрачиваемой на деформацию, превращается в теплоту (происходит нагрев), остальная часть энергии аккумулируется в виде повышенной плотности дефектов решетки (вакансий и главным образом дислокаций). О накоплении энергии свиде­тельствует также рост остаточных напряжений в результате деформации. В связи с этим состояние пластически деформированного материала неустойчиво и может изменяться, например при термической обработке.

 

Простейшими элементами деформаций являются:

относительное удлинение δ — отношение приращения длины (/,—/0) образца под действием нагрузки к ее первоначальной величине /0:

δ=(/,—/0)/ /0

относительное сужение ψ — отношение уменьшения площади поперечного сечения образца под действием нагрузки (S0—S1) к ее первоначальной величине S0:

ψ= (S0—S1)/ S0

Сопротивление деформированию определяется сопротивлением сдвигу одного атомного слоя относительно другого, соседнего. Для оценки величины этого сопротивления введено понятие «напряжение».

Напряжение — мера внутренних сил, возникающих при деформации материала, характеризующая изменение сил взаимодействия между частицами вещества при его деформации. Напряжение не измеряется непосредственно, а лишь вычисляется через величины действующих на тело сил или определяется косвенно — по эффектам его действия, например по пьезоэлектрическому эффекту.

Напряжение является векторной величиной; величины проекции этого вектора на нормаль и касательную плоскость называются нормальным и касательным напряжениями..

Система скольжения при пластической деформации в конкретном кристаллическом веществе характеризуется величиной минимального касательного напряжения, которое необходимо для начала скольжения. Это критическое напряжение сдвига т0, которое не зависит от ориентации плоскости скольжения по отношению к приложенной нагрузке и является одной из фундаментальных характеристик кристаллического материала.

Если скольжение в данной системе начинается при достижении напряжения сдвига критической величины т0, то продолжение деформации требует непрерывного повышения величины напряжения сдвига, т.е. деформация сопровождается непрерывным упрочнением (деформационное упрочнение, или наклеп).

Наклеп — изменение структуры и свойств с увеличением плотности дефектов кристаллической решетки в веществах в результате пластической деформации. При наклепе уменьшаются пластичность и ударная вязкость, но повышаются твердость и прочность. Наклеп используется для поверхностного упрочнения изделий, но следует иметь в виду, что наклепанные металлы больше подвержены коррозии и склонны к коррозионному растрескиванию.

Напряжения характеризуют по источнику возникновения и по отношению ко времени воздействия.

По источнику возникновения напряжения делят на механические — при механических воздействиях, термические — вследствие температурного градиента, например в процессе быстрого нагрева или охлаждения между поверхностными и внутренними слоями, и структурные (фазовые) — при различных физико-химических процессах, происходящих в веществе, например изменении объема отдельных кристаллитов при фазовых превращениях.

Величина механических напряжений в образце материала σ прямо пропорциональна величине внешней силы F, Па:

σ = F/S,

где S — площадь образца,м2.

Основные механические характеристики сопротивления материала деформации и разрушению: модуль Юнга, коэффициент Пуассона, модуль сдвига, предел пропорциональности, предел упругости, а также пределы текучести и прочности.





Дата добавления: 2014-01-05; Просмотров: 1695; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.224.50.28
Генерация страницы за: 0.006 сек.