КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні
9. У попередньому пункті ми довели теорему, яка визначила умови, при яких звичайний дріб перетворюється у десятковий. Цілком закономірно виникає запитання «а як бути у випадках, коли знаменник у канонічному розкладі містить прості множники, відмінні від 2 і 5?». Розглянемо звичайний дріб такий, що n=2m•5k•р, де р – простий множник, відмінний від 2 і 5. На практиці при спробі перетворити такі звичайні дроби у десяткові шляхом ділення чисельника на знаменник доводиться зустрічатися з двома випадками: 1) на певному кроці ділення одна цифра чи група цифр починає повторюватися одразу після коми; 2) на певному кроці ділення одна цифра чи група цифр починає повторюватися не одразу після коми. Наприклад, =0,232323…; =0,2131313…. В таких випадках говорять, що дістаємо нескінченний періодичний десятковий дріб. Означення: нескінченний десятковий дріб, у якого одна цифра або група цифр весь час повторюється називається нескінченним періодичним дробом. Означення: одна цифра або група цифр, яка повторюється, називається періодом. Нескінченні періодичні дроби прийнято позначати так: 0,2131313…=0,2(13), 0,373373373…=0,(373). Число, утворене цифрами, що стоять після коми до періоду, називають доперіодичною частиною. У наведених прикладах: (13) і (373) – це періоди, а число 2 у першому дробові – доперіодична частина. В математиці доведено, що число цифр у періоді нескінченного періодичного дробу не перевищує n-1, де n знаменник звичайного дробу . Серед нескінченних періодичних дробів виділяють чисті та мішані періодичні дроби. Означення: чистим періодичним дробом називається нескінченний десятковий дріб, у якого період починається одразу після коми. Означення: мішаним періодичним дробом називається нескінченний десятковий дріб, у якого період починається не одразу після коми. Таким чином, ми з’ясували, що при перетворенні звичайних дробів у десяткові, ми можемо зустрітися з двома випадками: 1) ділення чисельника на знаменник призводить до скінченного десяткового дробу; 2) ділення чисельника на знаменник призводить до нескінченного десяткового дробу, в якому одна цифра чи група цифр весь час повторюється. Отже, можна стверджувати, що нескінченні періодичні дроби існують. У зв’язку з цим виникає питання про перетворення чистих і мішаних періодичних дробів у звичайні. У математиці доведені теореми, на яких ґрунтуються наступні правила перетворення періодичних дробів у звичайні. Правило 1: чистий періодичний десятковий дріб дорівнює звичайному дробові, чисельником якого є число, що стоїть у періоді, а знаменником – число, яке записане стількома дев’ятками, скільки цифр у періоді. Правило 2: мішаний періодичний десятковий дріб дорівнює звичайному дробові, чисельник якого є різниця між числом, що стоїть після коми до кінця періоду, та числом, що стоїть після коми до періоду, а знаменником є число, яке записане стількома дев’ятками, скільки цифр у періоді, та стількома нулями, скільки є цифр до періоду. Вправа: перетворити періодичні дроби у звичайні: 0,(243); 0, 134(27).
Дата добавления: 2014-01-05; Просмотров: 879; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |