КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятия взаимодействия
Тема 5. Элементарные частицы и взаимодействия. Теории объединений. План: 1. Понятия взаимодействия. 2. Элементарные частицы и их классификация. Элементарные частицы как переносчики взаимодействий. 3. Теории объединений.
Все отмеченные выше структурные объекты мира объединяются в системы вследствие взаимодействий между собой. Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией. В природе существуют качественно различные системы связанных объектов. Ядра — связанные системы протонов и нейтронов; атомы — связанные ядра и электроны; макротела — совокупность атомов и молекул; Солнечная система — "связка" планет и массивной звезды; галактика — "связка" звезд. Наличие связанных систем объектов говорит о том, что должно существовать нечто такое, что скрепляет части системы в целое. Чтобы "разрушить" систему частично или полностью, нужно затратить энергию. Взаимное влияние частей системы или структурных единиц происходит посредством полей (гравитационного, электрического, магнитного и других) и характеризуется энергией взаимодействия. В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному. Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий. Кратко охарактеризуем каждый из этих четырех видов взаимодействий. Сильные (ядерные) взаимодействия. Наличие в ядрах одинаково заряженных протонов и нейтральных частиц говорит о том, что должны существовать взаимодействия, которые гораздо интенсивнее электромагнитных, ибо иначе ядро не могло образоваться. Эти взаимодействия (их называют сильными) проявляются лишь в пределах ядра. Этот вид взаимодействия обеспечивает связь нуклонов в ядре. Константа сильного взаимодействия имеет величину порядка 1. Наибольшее расстояние, на котором проявляется сильное взаимодействие (радиус действия ), составляет примерно 10-13 см. Электромагнитные взаимодействия. Ими обусловлены связи в атомах, молекулах и обычных макротелах. Энергия ионизации атома, т. е. энергия отрыва электрона от ядра, определяет значение электромагнитного взаимодействия, существующего в атоме. Теплота парообразования, т. е. энергия перехода жидкость — пар (при атмосферном давлении), определит, правда довольно грубо, значение межмолекулярных взаимодействий в теле. Последние же имеют электромагнитное происхождение. Константа взаимодействия равна 10-3. Радиус действия не ограничен (). Слабое взаимодействие. Это взаимодействие ответственно за все виды Р-распада ядер (включая е-захват), за многие распады элементарных частиц, а также за все процессы взаимодействия нейтрино с веществом. Константа взаимодействия равна по порядку величины 10-15. Слабое взаимодействие, как и сильное, является короткодействующим. Как отмечалось, из большого списка элементарных частиц только электрон, протон, фотон и нейтрино всех типов являются стабильными. Под влиянием "внутренних причин" нестабильные свободные частицы за те или иные характерные времена превращаются в другие частицы. Медленные распады с характерным временем 10-10—10_6 с происходят за счет так называемого слабого взаимодействия, тогда как быстрый распад (10-16 с) происходит под влиянием электромагнитных взаимодействий. Гравитационные взаимодействия (тяготения). Притяжение тел к Земле, существование Солнечной системы, звездных систем (галактик) обусловлено взаимодействием сил тяготения, или иначе — гравитационными взаимодействиями. Эти взаимодействия универсальны, т. е. применимы к любым микро- и макрообъектам. Однако они существенны лишь для тел огромных астрономических масс и для формирования структуры и эволюции Вселенной как целого. Гравитационные взаимодействия очень быстро ослабевают для объектов с малыми массами и практически не играют роли для ядерных и атомных систем. Проявления гравитации количественно были изучены одними из первых. Это не случайно, ибо источником гравитации являются массы тел, а дальность гравитационного взаимодействия не ограничена. Константа взаимодействия имеет значение порядка 10-39. Радиус действия не ограничен (r = °°). Гравитационное взаимодействие является универсальным, ему подвержены все без исключения элементарные частицы. Однако в процессах микромира гравитационное взаимодействие ощутимой роли не играет. Характеристики видов взаимодействий приведены в табл. 6.1. В вопросах строения и развития мира как целого роль гравитации становится определяющей. Исследование же конкретных небесных объектов (звезд, пульсаров, квазаров и др.) невозможно без привлечения всех видов фундаментальных взаимодействий. Несомненно, приведенная классификация взаимодействий отражает современный уровень развития науки. В будущем, возможно, взаимодействия будут либо объединены, либо их останется меньше, если обнаружатся связи между константами взаимодействия. Например, уже удалось описать в рамках единой теории электромагнитное и слабое взаимодействия. Между константами взаимодействия и характеристиками Вселенной существует какая-то удивительная зависимость. Например, отношение радиуса Метагалактики (R = 51027 см) к размерам атома равно отношению электромагнитных и гравитационных сил, действующих между элементарными частицами. Близкодействие и дальнодействие—это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепции близко действия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме. Вся совокупность элементарных частиц с их взаимодействиями проявляет себя макроскопически в форме вещества и поля. Поле в отличие от вещества обладает особыми свойствами. Физическая реальность электромагнитного поля видна хотя бы из того, что существуют радиоволны. Источником электромагнитного поля являются движущиеся заряженные частицы. Взаимодействие зарядов происходит по схеме: частица — поле — частица. Поле является переносчиком взаимодействия. В некоторых условиях поле может "оторваться" от своих источников и свободно распространяться в пространстве. Такое поле носит волновой характер. Как получают сведения о состоянии вещества звезд? Атомные процессы, которые разыгрываются во внешних оболочках звезд, сопровождаются излучением электромагнитных волн. Одним из таких процессов является возбуждение атомов, ведущее к излучению ряда характерных "порций" энергии электромагнитного поля (спектр). У каждого химического элемента имеется свой, только ему присущий спектр излучения. Анализируя, например, солнечный свет (свет является электромагнитным излучением) с помощью оптических приборов, можно определить химический состав и процентное содержание элементов во внешних оболочках Солнца. В современной естественно-научной картине мира как вещество, так и поле состоят из элементарных частиц, а частицы взаимодействуют друг с другом, взаимопревращаются. На уровне элементарных частиц происходит взаимопревращение поля и вещества. Так, фотоны могут превратиться в электронно-позитронные пары, а эти пары в процессе взаимодействия уничтожаются (аннигилируются) с образованием фотонов. Более того, вакуум тоже состоит из частиц (виртуальных частиц), которые взаимодействуют как друг с другом, так и с обычными частицами. Таким образом, исчезают фактически границы между веществом и полем и даже между вакуумом, с одной стороны, и веществом и полем — с другой. На фундаментальном уровне все грани в природе действительно оказываются условными. В современной естественно-научной картине мира вещество и поле взаимопревращаются. Поэтому в настоящее время предпринимаются настойчивые попытки создать единую теорию всех видов взаимодействий. При наличии нескольких полей для определения результирующего взаимодействия применяют принцип суперпозиции. Принцип суперпозиции в естествознании позволяет получать результирующий эффект от наложения (суперпозиции) нескольких независимых взаимодействий как сумму эффектов, вызываемых каждым взаимодействием в отдельности. Он справедлив для систем, описываемых линейными уравнениями. Принцип суперпозиции широко используется в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям. Согласно этому, если физическая система может находиться в состояниях, описываемых двумя или несколькими функциями, то система может также находиться в состоянии, описываемом любой линейной комбинацией этих функций.
Дата добавления: 2014-01-05; Просмотров: 1005; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |