КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ причин повреждения конструкций подпорных стен и павильонов
В качестве возможных причин наблюдаемых деформаций подпорных стен (отклонение от вертикали, частичное обрушение) могут быть рассмотрены потеря устойчивости основания и сдвиг под воздействием статического давления собственного веса грунта и воды, давления замерзшей воды и морозного пучения грунта. Расчеты на воздействие касательных сил морозного пучения показывают, что при промерзании увлажненного грунта на раствор горизонтальных швов подпорных стен могут действовать растягивающие усилия, составляющие порядка 8т/пог.м, вызывающие растягивающие напряжения в растворе порядка 0,045 МПа. Согласно настоящим обследованиям прочность раствора на сжатие составляет порядка 0,2…0,3 МПа, чему соответствует расчетное сопротивление растяжению не более 0,01 МПа. Следовательно, развитие горизонтальных трещин в подпорных стенах вполне закономерно. Возникающие при изгибе стенки нормальные напряжения в кладке, составившие 6,7 МПа, существенно превышают ее фактическую прочность (0,53 МПа). Этот расчет объясняет наблюдаемое выпучивание подпорных стен, возникновение вертикальных и наклонных трещин в подпорных стенах у Церковного павильона Таким образом, морозное пучение грунта вызывает образование горизонтальных трещин и постепенное смещение конструкций. Образование трещин способствует вымыванию раствора и обрушению кладки. Кроме того, очевидное влияние на сохранность конструкций имеет процесс просачивания воды. Учитывая сложную геометрию напластования грунтов, сложную геометрию нагружения основания, а также возможность развития областей предельного состояния грунта расчеты для оценки устойчивости подпорных стен и всего сооружения были выполнены с использованием одного из наиболее эффективных современных численных методов – метода конечных элементов. Серия численных экспериментов проведена с использованием программного комплекса «FEM-models», разработанного сотрудниками НПФ «Геореконструкция» под руководством проф. В.М.Улицкого. Расчеты выполнялись в плоской постановке для различных сечений, полученных по результатам вскрытия подпорных стен и бурения геологических скважин. Для расчетов использовалась упруго-пластическая модель грунта, предполагающая линейную связь между напряжениями и деформациями в границах предельной поверхности, описываемой критерием Кулона-Мора, и бездилтантное (равнообъемное) течение грунта при достижении предельного напряженного состояния. Расчетная схема задачи для сечения 1-1 представлена на рис. 7. Несущий слой основания фундаментов галереи и подпорных стен в расчетах представлен техногенными отложениями.
Рис. 7. Расчетная схема задачи для сечения 1-1 Рис. 8. Деформированная схема (масштаб деформаций увеличен в 50 раз), области предельного состояния основания, вертикальные перемещения конструкций (м)
Рис. 9. Деформированная схема (масштаб деформаций увеличен в 50 раз), области предельного состояния основания, горизонтальные перемещения конструкций (м) Из проведенного анализа следует, что опасность потери несущей способности подпорных стен имеется только у Японского павильона. На остальных участках при условии восстановления сплошности кладки подпорных стен и исключения вертикальных деформаций (из-за гниения лежней, размывания основания потоком грунтовых вод) устойчивость стен обеспечена. Причниа их деформаций состоит в возникновении нормальных и касательных сил морозного пучения. На основании обследования предложены следующие усилительные мероприятия: 1. У Японского павильона – восстановление обрушенной подпорной стены, возведение дополнительной подпорной стены из буроинъекционных свай, заглубленных в слой твердых моренных суглинков. 2. Инъекционное закрепление кладки всех наружных подпорных стен через вертикальные скважины, пробуриваемые в кладке. 3. Устройство буроинъекционных свай, пробуриваемых через тело кладки и погружаемых до кровли коренных твердых глин. Эффективность мероприятий по усилению будет достигнута только в комплексе с мероприятиями по восстановлению системы водоотведения, разработка которых составляет второй этап работ. В сентябре 2001 г. уже начались усилительные работы, которые проводятся фирмами "Геореконструкция" и "Геоизол".
Дата добавления: 2014-01-05; Просмотров: 1296; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |