Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон збереження маси




ПЛАН

1. ЗНАЧЕННЯ АТОМНО-МОЛЕКУЛЯРНОГО ВЧЕННЯ ЯК ФУНДАМЕНТУ СУЧАСНОЇ ХІМІЇ

2. ЗАКОН ПРОСТИХ ОБ’ЄМНИХ ВІДНОШЕНЬ, АБО «ХІМІЧНОГО» ЗАКОНУ ГЕЙ-ЛЮССАКА

3. ЗАКОН АВОГАДРО

4. ХІМІЧНИЙ ЕЛЕМЕНТ

6. ЗАКОН СТАЛОСТІ СКЛАДУ

7. ЗАКОН КРАТНИХ ВІДНОШЕНЬ

8. ЗАКОН ЕКВІВАЛЕНТІВ

ЛІТЕРАТУРА

1. Романова Н.В. Загальна та неорганічна хімія. Підручний для студентів вищих навчальних закладів. – К.: Ірпінь. ВТФ “Перун”, 2004 – 480 с.(с.12-27)

2. Басов В.П., Родіонов В.М., Юрченко О.Г. Хімія. Навчальний посібник для самопідготовки до іспитів. К.: Каравела, Львів,: Новий світ – 2000, 2002 – 280 с.

3. Ахметов Н.С. “Общая и неорганическая химия.: Учебник для ВУЗов. – М.: В.школа. – 1981 – 679 с.

 

1. ЗНАЧЕННЯ АТОМНО-МОЛЕКУЛЯРНОГО ВЧЕННЯ ЯК ФУНДАМЕНТУ СУЧАСНОЇ ХІМІЇ

У розвитку хімії велику роль відіграло атомно-молекулярне вчення, яке відрізнялось від попередніх теорій своєю логікою. Основи атомно-молеку­лярного вчення вперше були викладені М. В. Ломоносовим (1741 р.) у праці «Елементи математичної хімії». В основі цього вчення лежить принцип дис­кретності речовини: будь-яка речовина складається з окремих, дуже малих частинок. Відмінність між речовинами зумовлена відмінністю між їхніми час­тинками: частинки однієї речовини однакові, частинки різних речовин — різні.

Після утвердження атомно-молекулярного вчення теоретична хімія змогла встановити відмінність між атомними, молекулярними та молярними масами еквівалентів, забезпечити можливість використання єдиних хімічних формул.

Частинки речовини перебувають у безперервному русі за будь-яких умов. Для більшості речовин такими частинками є молекули.

Молекулаце найменша частинка речовини, яка має сталий склад і здатна зберігати основні хімічні властивості цієї речовини.

Молекули простих речовин складаються з атомів одного хімічного елемента, а молекули складних речовин — з атомів різних елементів.

Атомце найменша хімічно неподільна частинка хімічного елемента, яка зберігає його хімічні властивості.

До складу молекул може входити різне число атомів, наприклад, молекули газів (крім інертних) в основному складаються з двох атомів, а молекули білків — з сотень тисяч атомів.

Розміри атомів виражаються величинами порядку десятих часток нанометра.

Абсолютні маси атомів і молекул дуже малі: маса атома найлегшого еле­мента (Гідрогену) становить 1,67 •10 -24 г, а маса атома одного з найважчих елементів—Плюмбуму— 3,4 •10 -22 г. Зрозуміло, що такими величинами оперувати незручно, тому в розрахунках використовують не абсолютні зна­чення мас атомів, а відносні.

За одиницю вимірювання маси атомів англійський фізикохімік Дж. Дальтон запропонував прийняти масу атома найлегшого елемента — Гідрогену.

Дещо пізніше шведський хімік і мінералог Й. Я. Берцеліус за елемент порівняння запропонував взяти Оксиген, прийнявши масу його атома за 100. З 1960 р. вважають, що відносна атомна маса Оксигену дорівнює 16, а атомна маса Гідрогену — 1,008.

До 1960 р. існувало дві шкали атомних мас: фізична і хімічна.

В основу фізичної шкали було покладено значення атомної маси нукліда Оксигену ' 16О, що чисельно дорівнює 16, а в основу хімічної шкали — значен­ня атомної маси природного Оксигену, який є сумішшю різних нуклідів, що чисельно також дорівнює 16. У 1960 р. Міжнародна спілка теоретичної і прикладної фізики, а в 1961 р. Міжнародна спілка теоретичної і прикладної хімії (IUРАС — Іпіегпаїіопаї Unіоп оf Риге and Аррlіеd Сhеmistrу) прийняли нову, єдину шкалу атомних мас, за якою маси атомів і молекул порівнюють із 1/12 маси нукліда Карбону І2С. Це зумовлено тим, що в цьому разі відносні атомні маси елементів набувають значень, найближчих до цілих чисел.

Відносною молекулярною Мr (або атомною Аr) масою речовини назива­ють відношення маси молекули (або атома) т0 даної речовини до 1/12 маси атома Карбону-12 т0C-

 

Символ Мr запропонований ІЮПАК, свідчить про відносний характер молекулярної маси (rrelative — відносний).

Нині відносні атомні маси всіх хімічних елементів визначено досить точ­но. Додавши відносні маси атомів, які входять до складу молекули тієї чи іншої речовини, можна обчислити відносну молекулярну масу цієї речовини.

Чим більше атомів або молекул міститься в речовині, тим більша її маса. Число молекул у макроскопічних тілах надзвичайно велике, тому прийнято зазначати не абсолютне число атомів і молекул, а відносне. Число молекул або атомів у даній речовині прийнято порівнювати з числом атомів, що містяться в 0,012 кг Карбону. Відносне число атомів і молекул у речовині характеризують фізичною величиною, яка називається кількістю речовини.

Кількість речовини v(n) — це відношення числа молекул N. що містяться в даній речовині, до числа NА атомів у 0,012 кг Карбону:

v (n) = N|NА.

Якщо речовина складається з окремих атомів, які не сполучені в молекули, то під числом молекул слід розуміти число атомів.

Кількість речовини виражається в молях.

Моль — це така кількість речовини, яка містить стільки молекул, атомів, йонів або інших структурних одиниць, скільки міститься атомів у 0,012 кг нукліда Карбону 12С.

Якщо, наприклад, кількість речовини дорівнює 2 моль, то це означає, що число молекул у речовині в 2 рази більше, ніж число атомів у 0,012 кг нукліда Карбону І2С.

Застосовуючи поняття «моль», потрібно в кожному конкретному випадку зазначати, про які саме структурні одиниці йдеться. Наприклад, слід розрізня­ти поняття моль атомів Н, моль молекул Н2, моль йонів Н+.

Число структурних одиниць, що міститься в одному молі будь-якої речовини, називають числом Авогадро (на честь італійського вченого фізика і хіміка). Це число визначено з великою точністю різними методам і стано­вить 6,02 • 10 23 моль -1.

Крім відносної молекулярної маси Мr у хімії і фізиці широко застосовують поняття молярна маса М.

Молярною масою називають масу речовини, взятої в кількості один моль. Згідно з цим визначенням, молярна маса дорівнює добутку маси молекули на число Авогадро:

М = m0 NA

 


2. ЗАКОН ПРОСТИХ ОБ’ЄМНИХ ВІДНОШЕНЬ, АБО «ХІМІЧНОГО» ЗАКОНУ ГЕЙ-ЛЮССАКА

 

Вивчаючи реакції між газами і проводячи кількісні дослідження, французь­кий вчений Ж. Л. Гей-Люссак зробив узагальнення, відоме під назвою закону простих об'ємних відношень, або «хімічного» закону Гей-Люссака: за одна­кових умов об'єми газів, що вступають у реакцію, відносяться один до одного, а також до об'ємів газоподібних продуктів реакції як невеликі цілі числа.

Так, під час взаємодії 2 об'ємів водню і 1 об'єму кисню утворюється 2 об'є­ми водяної пари.

Цей закон привернув загальну увагу хіміків, які намагались пояснити про­стоту об'ємних співвідношень газів, атоми яких сполучаються між собою.

 

3. ЗАКОН АВОГАДРО


Найбільш послідовно і досконало дослідив газові реакції італійський фізик А. Авогадро, що дало йому змогу зробити нові теоретичні узагальнення. В 1811 р. він ввів поняття про молекулу і сформулював свою знамениту гіпо­тезу, яка після експериментальної перевірки перетворилася на закон.

Закон Авогадро формулюється так: в однакових об'ємах різних газів за од­накових умов (температури та тиску) міститься однакове число молекул.

Вводячи поняття про молекулу, А. Авогадро не відкидав поняття «атом». Закон Авогадро узгоджувався з фактами, які привели до відкриття закону простих об'ємних відношень, дав змогу зробити висновок про число атомів у молекулах газів, відіграв велику роль у визначенні атомної маси елементів і молекулярної маси речовин.

Згідно з законом Авогадро, однакове число молекул різних газів за однакових умов займає один і той самий об'єм. Виходячи з того, що в 1 моль будь-якої речовини міститься однакове число частинок, які в газоподібному стані займають за певних температури та тиску однакові об'єми, неважко обчислити об'єм 1 моль газоподібної речовини за нормальних умов (101 325 Па, 0 °С).

Обчислення молярного об'єму інших газів (водню, вуглекислого газу тощо) показали, що ця величина стала. Отже, / моль будь-якого газу за нормальних умов займає об'єм 22,4 л. або 0,0224 м3. Цей об'єм називається молярним об 'ємом газу.

 

4. ХІМІЧНИЙ ЕЛЕМЕНТ

 

Д. І. Менделєєв був першим хіміком, який підкреслив необхідність розмежування понять хімічний елемент і проста речовина. Кожна проста речовина характеризується певними властивостями доти, доки не вступить у хімічну реакцію і не утворить нову речовину. Так, до складу сірки, що існує у природі, входить лише один компонент — Сульфур, до складу свинцевого блиску — два: Сульфур та Плюмбум. Однак Сульфур, що входить до складу свинцевого блиску, виявляє інші властивості, ніж у вільному стані, Сірка у вільному стані — це проста речовина, що складається з одного елемента; свинцевий блиск — складна речовина, що складається з двох елементів.

Індивідуальні речовини, що складаються з атомів одного хімічного елемен­та, називаються простими. Речовини, що складаються з атомів різних хіміч­них елементів, можуть бути складними речовинами або сумішшю простих.

Хімічна речовина, що використовується для виконання дослідів чи для інших потреб у лабораторії, називається реактивом. За ступенем чистоти реактиви відповідно до стандартів поділяють на «хімічно чисті» (х. ч.), «чис­ті для аналізу» (ч. д. а.) та «чисті» (ч.). Хімічні реактиви, що не піддавались спеціальному очищенню, називаються «технічними».

Очищення речовин від домішок проводять різними методами. Найпоши­ренішими серед них для твердих речовин є перекристалізація і сублімація, для рідин — фільтрування і дистиляція, для газів — поглинання домішок різними речовинами (адсорбція).

Чистоту речовини визначають за температурою її плавлення (кипіння) та густиною, хімічним аналізом, порівнянням обчислених величин з табличними.

Хімічний елемент можна визначити як окремий вид атомів, що харак­теризується певними властивостями, або як сукупність атомів з однакови­ми зарядами ядер. Отже, під хімічним елементом розуміють окремий вид атомів, хімічно не сполучених між собою. Проста речовинаце система хімічно сполучених атомів одного й того самого елемента. Відмінність між хімічним елементом і простою речовиною стає більш зрозумілою, коли ми стикаємось з явищем алотропії: один і той самий елемент, наприклад Суль­фур, Карбон, Стибій, Фосфор, у вільному стані можуть існувати у вигляді кількох простих речовин.

Явище існування хімічного елемента у вигляді кількох простих речовин називається алотропією. Прості речовини, утворені одним елементом, називаються алотропними модифікаціями (видозмінами) цього елемента.

Явище алотропії зумовлене в одних випадках тим, що молекули різних алотропних видозмін елемента складаються з різної кількості атомів, в інших — тим, що їх кристали мають різну будову (поліморфізм).

Атоми різних елементів відрізняються, насамперед, величиною заряду ядра. Різновиди атомів одного й того самого елемента, що мають однако­вий заряд ядра, але різне масове число, називаються ізотопами. Елементів нині відомо 109, ізотопів -2000. Практично всі елементи мають ізотопи. Отже, хімічний елемент — це родина ізотопів. Елементи трапляються на Землі в різних кількостях. Науки, що вивчають поширеність їх у Землі та космосі, називаються геохімією та космохімією. Основи цих наук закладені працями видатних вчених — В. І. Вернадського, О. Є. Ферсмана, О. П. Вино­градова, Ф. Кларка, В. М. Гольдшмідта та ін.

У 1908 р. американський вчений Ф. Кларк опублікував книгу «Дані гео­хімії», де на основі результатів хімічного аналізу гірських порід, мінералів і вод розрахував середній вміст кожного з елементів у верхніх шарах Землі.

У космосі є такі самі елементи, що й на Землі, і періодичний закон охоплює їх всі. Однак поширення елементів на Землі і в космосі не однакове. Гідроген і Гелій — найпоширеніші елементи космосу. Ядерна реакція перетворення Гідрогену на Гелій — це одне з основних джерел енергії зірок і Сонця. На Землі вміст водню і гелію у вільному стані невеликий, оскільки ці гази легкі і вивіт­рились за час існування нашої планети. Під час перебігу термоядерних реакцій в надрах зірок відбуваються складні процеси синтезу елементів. При цьому перетворенню піддаються легкі ядра (Літій, Берилій, Бор), тому вміст цих еле­ментів у космосі обмежений. Відносний вміст елементів у космосі із зростанням їхніх атомних мас знижується, але Ферум і подібні до нього елементи дають на кривій «атомна маса елемента — вміст елемента» характерний пік, отже, ці елементи, можливо, утворюються під час вибуху зірок.

Найбільш поширеним елементом на Землі є Оксиген. Оксиген, Силіцій і Алюміній становлять близько 80 % маси земної кори.

Якщо суму всіх атомів елементів прийняти за 100 %, то частка, що припадає на атоми даного елемента, буде виражатись атомним відсотком. Вміст елементів за масою називають масовими кпарками, атомний вміст — атомними кларками. Виражати вміст елементів в одиницях «кларках» запро­понував О. Є. Ферсман на честь видатного геохіміка Ф. Кларка. Кларком називають вміст даного елемента в певній космо- або геохімічній системі, виражений в атомних або масових відсотках (атомні або масові кларки). За масовими кларками 25 елементів (Оксиген, Силіцій, Алюміній, Ферум, Каль­цій, Цирконій, Ванадій, Нікол, Цинк, Купрум, Натрій, Калій, Магній, Гідроген, Титан, Карбон, Хлор, Фосфор, Сульфур, Манган, Флуор, Барій, Нітроген, Стронцій, Хром) становлять 99,95 % маси земної кори.

Розподіл елементів від кори до центра Землі вивчав норвезький вчений В. М. Гольдшмідт. Він дійшов висновку, що цей розподіл не рівномірний, і в 1924 р. сформулював основний закон геохімії, розділив елементи на такі геохімічні групи:

атмофільні елементи, що входять до складу атмосфери (Оксиген, Нітроген, Гідроген, інертні гази та ін.);

літофільні елементи, що входять до складу кам'янистої оболонки Землі (до 120 км завглибшки); це галогени, Оксиген, Алюміній, Бор, Силіцій. Магній, лужні та лужно-земельні метали, рідкісноземельні елементи, Фосфор, Ніобій, Тантал, Титан, Хром, Ванадій, Вольфрам та ін.;

халькофільні елементи, що входять до складу халькосфери (до 1200 км завглибшки); до них належать Сульфур, Селен, Телур, Плюмбум, Купрум, Галій, Індій, Талій, Германій та ін.;

сидерофільні елементи, що входять до складу сидеросфери (ядро Землі); це Ферум, Нікол, Кобальт, Платина, платинові метали. Молібден, Реній та ці елементи характеризуються спорідненістю до Фосфору, Карбону і деякою мірою до Сульфуру.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 649; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.