Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы счисления. Объемный является самым простым способом измерения информации

Объемный подход

Объемный является самым простым способом измерения информации. Соответствующую количественную оценку информации естественно назвать объемом информации.

Объем информации в сообщении – это количество символов в сообщении. Поскольку в вычислительной технике используется двоичная система счисления, то минимальная единица информации – бит.

Алфавит, используемый для представления текстов в компьютере, включает 256 символов, информационный вес каждого из которых равен 8 бит (28=256), т.е. для записи 1 символа из алфавита мощностью 256 требуется 8 двоичных разрядов. Отсюда соотношение 1 байт=8 бит.

Такое соотношение было принято не сразу: для различных вычислительных машин длина байта была различной. Но в конце 60-х годов понятие байта стало универсальным и машинно-независимым.

Более крупные единицы измерения объема данных:

1 Кбайт (килобайт) = 1024 байт = 210 байт

1 Мбайт (мегабайт) = 1024 Кбайт = 220 байт

1 Гбайт (гигабайт) = 1024 Мбайт = 230 байт

1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

Информационный объем сообщения (информационная емкость сообщения) – количество информации в сообщении, измеренное в битах, байтах или производных единицах (Кбайтах, Мбайтах и т. д.).

Пример. Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге?

Решение. Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации. Значит, страница содержит 40 х 60 = 2400 байт информации. Объем всей информации в книге (в разных единицах):

2400 х 150 == 360 000 байт

360000/1024 = 351,5625 Кбайт

351,5625/1024 = 0,34332275 Мбайт.

Информация в ЭВМ кодируется в двоичной системе счисления.

Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления цифры не меняют своего количественного значения при изменении их расположения в числе. Римская система счисления является непозиционной. Значение цифры X в числе XXI остается неизменным при вариации ее положения в числе (значение в любой позиции равно десяти).

В позиционных системах счисления количественное значение каждой цифры зависит от ее места (позиции) в числе. Десятичная система счисления является позиционной. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700+50+7+0,7 = 7*102 + 5*101 +7*100 + 7*10-1

Здесь 10 служит основой системы исчисления, а показатель степени - это номер позиции цифры в записи числа (нумерация ведется слева на право, начиная с нуля).

Любая позиционная система счисления характеризуется своим основанием .

Основание позиционной системы счисления это количество различных знаков или символов, используемых для изображения цифр в данной системе.

В десятичной систем счисления используется десять цифр: 0, 1, 2,..., 9; в двоичной — две: 0 и 1; восьмеричной — восемь: 0, 1,2,..., 7. В общем случае, в системе счисления с основанием q используются цифры от 0 до (q – 1).

За основание можно принять любое натуральное число – два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1qn-1 + an-2qn-2 +... + a1q1+ a0q0 +a-1q-1 +... + a-mq-m,

где ai – цифры системы счисления; n и m – число целых и дробных разрядов соответственно.

Например:

1011,12 = 1*23 + 0*22 + 1*21 + 1*2 0 +1*2 -1

276,528 = 2*82 + 7*81 + 6*8 0 + 5*8 -1 + 2*8 -2

В ВТ применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмеричную, шестнадцатеричную системы и др. Для обозначения используемой системы счисления числа заключают в скобки и индексом указывают основание:

(15)10;(1011)2;(735)8;(1ЕА9F)16.

Иногда скобки опускают и оставляют только индекс:

1510;10112;7358;1ЕА9F16.

 

В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

* для ее реализации нужны технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен - ненамагничен и т.п.), а не с десятью, например, как в десятичной - и это намного проще;

* представление информации посредством только двух состояний надежно и помехоустойчиво;

* возможно применение аппарата алгебры логики для выполнения логических преобразований информации;

* двоичная арифметика намного проще десятичной (двоичные таблицы сложения и умножения предельно просты):

 

Таблица 1

Двоичная таблица сложения Двоичная таблица умножения
0+0=0 1+0=1 0*0=0 1*0=0
0+1=1 1+1=10 0*1=0 1*1=1

 

0111 7

+ 0110 + 6

1101 13

 

Недостаток двоичной системы – быстрый рост числа разрядов, необходимых для записи числа.

 

Для сокращения записи адресов и содержимого оперативной памяти компьютера используют шестнадцатеричную и восьмеричную системы исчисления: поскольку 23=8, а 24=16, то каждые три двоичных разряда (триада) числа образуют один восьмеричный, а каждых четыре двоичных разряда (тетрада) - один шестнадцатеричный.

 

Ниже, в таблице 2 приведены первые 16 натуральных чисел записанных в десятичной, двоичной, восьмеричной и шестнадцатеричной системах исчисления.

 

Системы счисления
Десятичная Двоичная Восьмеричная Шестнадцатеричная
       
       
       
       
       
       
       
       
       
       
      А
      В
      С
       
      Е
      F

 

В программировании актуальной является проблема перевода чисел из одной позиционной системы исчисления в другую.

<== предыдущая лекция | следующая лекция ==>
Вероятностный подход | Правила перевода чисел из одной системы счисления в другую. Для перевода восьмеричных и шестнадцатеричных чисел в двоичную систему достаточно каждую цифру заменить эквивалентной ей двоичной триадой или тетрадой
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 598; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.184 сек.