Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Смешанное произведение векторов




Смешанным произведением трех векторов , , называется число, равное скалярному произведению вектора на векторное произведение векторов и , т.е. .

Геометрический смысл смешанного произведения выражает следующая теорема.

Теорема. Смешанное произведение равно объему параллелепипеда, построенного на приведенных к общему началу векторах , , , взятому со знаком «плюс», если тройка векторов , , правая, и со знаком «минус», если тройка векторов , , левая. Если же векторы , , компланарны, то .

В краткой записи:

Доказательство видно из рисунка.

Рис. 4.2.

 

Свойства смешанного произведения

1. .

В силу коммутативности скалярного произведения , поэтому достаточно доказать, что . Но эти числа равны по модулю (поскольку их модули совпадают с объемом параллелепипеда, построенного на векторах , , ), а знаки этих чисел совпадают, т.к. упорядоченные тройки , , и , , имеют одинаковую ориентацию.

Доказанное равенство позволяет обозначать смешанное произведение векторов , , символом , не указывая при этом, какие именно два вектора (первые или последние) перемножаются векторно.

2. Величина векторного произведения не изменяется при циклической перестановке сомножителей:

Модули всех выписанных смешанных произведений совпадают. Достаточно проследить за ориентацией троек.

3. векторы компланарны.

4. Смешанное произведение линейно по каждому из сомножителей. В частности,

.

Применяя свойство линейности скалярного произведения, получим

Аналогичные равенства справедливы и для остальных сомножителей. В самом деле, мы можем переставить интересующий нас сомножитель на первое место, раскрыть скобки, а затем выполнить обратную перестановку.

 

Выражение векторного произведения через координаты сомножителей

Теорема. Если векторы заданы своими координатами: , , , то смешанное произведение равняется определителю, строки которого соответственно равны координатам перемножаемых векторов, т.е.

.

Имеем . Тогда

.

 

Пример 4.4. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).

Решение.

 

Найдем координаты векторов:

Объем пирамиды

Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD.

Sосн = (ед2)

Т.к. V = ; (ед)

 

Пример 4.5. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости.

Решение.

Найдем координаты векторов:

Найдем смешанное произведение полученных векторов:

,

Таким образом, полученные выше векторы компланарны, следовательно, точки A, B, C и D лежат в одной плоскости.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.