КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Шкалирование результатов тестирования
План КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ (КИМЫ) И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ТЕСТИРОВАНИЯ
1. Шкалирование результатов тестирования. 2. Статистические характеристики теста. Начнем с привычных шкал термометра, вольтметра или обыкновенной школьной линейки. По положению ртутного столбика, стрелки вольтметра или штрихов линейки мы узнаем температуру, напряжение или длину, т.е. измеряем определенные характеристики определенных объектов. Результатом измерения является число. В реальной жизни не всегда удается выполнить измерение непосредственно. Часто для измерения доступны лишь некоторые функции интересующих нас латентных параметров объекта, и оценивание этих параметров производится путем определенной математической обработки косвенных измерений. Примером такой ситуации является и обработка результатов тестирования с целью оценивания подготовленности участников тестирования или трудности заданий. Раскрытие смысла этих параметров и разработка средств и методов их оптимального оценивания и являются основными объектами теории моделирования и параметризации педагогических тестов. С математической точки зрения, процесс измерения есть отображение состояния измеряемого объекта на некоторое множество действительных чисел (или на некоторое множество точек числовой оси), называемое шкалой. Однако шкала – это не просто определенное множество – дискретное или сплошь заполняющее некоторый промежуток. Важнейшей отличительной чертой шкалы является набор тех соотношений между ее элементами (отсчетами), которые имеют содержательный смысл и разумное толкование в рамках этой шкалы. Существует много различных шкал, в том числе, в педагогике. Но нас будут интересовать только четыре вида. 1. Порядковые шкалы, где результаты измерений осмысленно можно только сравнивать между собой. Примером может служить принятая в школе система оценок, выставляемых ученикам в зависимости от их успехов в учебе. Из соотношения отметок b1 < b2 для учеников А1 и А2 можно лишь заключить, что А1 учится хуже А2. Если же, например, b1 - b2 = 1, то утверждение "успехи А1 на 1 выше, чем успехи А2" не объясняет, каково различие между учениками и, по существу, лишено смысла. То же можно сказать и относительно шкалы первичных баллов (в абсолютном или относительном выражении) как для участников тестирования, так и для тестовых заданий. Максимум, что можно сделать в рамках этих шкал, это упорядочить участников тестирования или тестовые задания в порядке возрастания (или убывания) оценок соответствующих латентных параметров. Основными статистиками порядковых шкал являются медиана, квантили и ранговая корреляция. 2. Шкала более высокого уровня называется интервальной, или метрической. Ее отличительной чертой является наличие метрики. Это означает, что для любых отсчетов b1 и b2 содержательный смысл имеют не только соотношения типа b1 < b2 или b1 - b2, но и разность b2 - b1. При этом | b2 - b1 | трактуется как расстояние (между двумя элементами метрического множества), выраженное в определенных единицах и, главное, имеющее осмысленное толкование. Специфика шкалы состоит в отсутствии нулевого штриха, то есть в отсутствии начала отсчета. Поэтому метрическая шкала прекрасно подходит для фиксации взаимного положения измеряемых объектов (относительно друг друга), но она не в состоянии информировать о местоположении объекта в некоторой единой системе координат (удалении от начала отсчета). С математической точки зрения указанная ситуация означает, что на множестве определена метрика, единица измерения расстояния, но нет понятия нормы (определено понятие "расстояние", но нет понятия "длина"). Например, при строительстве гидросооружений важно измерять превышения (разности высот) между определенными точками (взаимное положение по высоте, имеющее конкретную гидродинамическую трактовку), но не сами высоты. Превышение между двумя точками, имеющие высоты, например 48 м. и 45 м., имеет то же смысл, что и превышение между точками с высотами 5 м. и 2 м. В противоположность этому разности между первичными баллами 48-45 и 5-2 невозможно сравнивать осмысленно. По такой же, по существу, шкале, по которой измеряются превышения, измеряются и латентные параметры трудность задания (d) и уровень знаний (Q), но только единицей измерения расстояний служат не метры, а логиты.
Таблица 1.1
Таблица 1.1 указывает соотношение между разностями Q - d в логитах и их трактовкой в виде вероятности того, что задание трудности d будет верно выполнено участником с уровнем подготовленности Q. Данные этой таблицы никак не изменятся, если к величинам Q и d прибавить любую константу. Последний столбец таблицы 1.1 содержит произведения р(1 - р), которые можно трактовать как количество информации о разности Q - d, которое содержится в соответствующем элементе матрицы ответов. Содержание этого столбца мы используем позже, но уже сей час полезно отметить, что информативность ответов зависит только от расстояния |Q - d | между Q и d и заметно падает с увеличением этого расстояния. Так, одно задание максимальной эффективности равносильно (с точки зрения поддержания одной и той же точности измерения) около 25 заданий минимальной эффективности. 3. Метрическая (интервальная) шкала, в которой определено начало отсчета, называется шкалой нормированной. В такой шкале определено не только понятие метрики, по и понятие нормы, позволяющее измерять "длины" (то есть определенно» местоположение относительно нуля, на чала отсчета). Поэтому и такой шкале имеет смысл говорить не только о разностях типа Q - d, но и о каждой величине Q или d в отдельности. Такая шкала является наиболее привлекательной, а ее построение в теории педагогических измерений представляет собой определенную революцию в этой теории, поскольку позволяет преодолеть основной ее недостаток – зависимость оценок одного индивидуума от использованного теста и контингента всех участников тестирования или определенной группы участников. 4. Кроме перечисленных "количественных" шкал, выделяют еще номинальную шкалу, основанную на качественных переменных, не поддающихся количественному измерению. Примером может служить пол участников тестирования, принадлежность определенному региону России и т.п. Числа по-прежнему используются в номинальных шкалах, но служат они всего лишь для различения отдельных фактов, как бы для их названия. Поэтому никаких содержательных соотношений, кроме а = b или а ¹ b, между такими числами нет. При этом выбор чисел вместо реальных имен или других способов идентификации, конечно, не обязателен, поскольку речь не идет о том, на сколько отличаются друг от друга объекты или события, обладающие каким-либо свойством или признаком. Если признаков, различающих объекты или события, только два, то номинальная шкала называется дихотомной. Примером могут служить элементы матрицы ответов участников тестирования на задания теста: правильное выполнение задания ("да") обозначается единицей, ошибочное ("нет") – нулем. При этом разность 1-0 не имеет никакого смысла, и сами цифры 1 и 0 можно заменить любыми другими, например, цифрами 9 и 5, символами "+", "-", словами "да", "нет", "зачет", "незачет" и т.п. Соответствующие номинальным шкалам данные состоят из наблюдаемых значений частот или табличных сведений о числе появлений каждой из разновидностей изучаемой переменной. Для характеристики номинальных данных часто используются такие (дескриптивные) статистики, как пропорция и процентное отношение. Использование той или иной шкалы из перечисленных четырех накладывает отпечаток и на применимость тех или иных методов математической обработки, которой обычно подвергаются исходные данные. Например, регрессионный анализ применим только по отношению к количественно выраженным переменным, измеряемым, по крайней мере, в метрической шкале. Примерно тоже самое можно сказать и относительно наиболее известных методов корреляционного анализа. Сказанное не означает, что результаты тестирования, отнесенные к порядковым или даже номинальным шкалам, нельзя анализировать количественно. Однако методы такого анализа должны быть, в общем случае, специальными и от личными от тех, которые используются для переменных в шкалах метрических и нормированных. Например, даже такую общепринятую оценку центра рассеяния переменной как арифметическая средняя часто бывает более обоснованным заменить медианой вариационного ряда, если переменные отнесены к шкале порядковой, а не метрической. Таким образом, содержательная интерпретация результатов математической обработки данных тестирования может быть дана лишь в том случае, если методы этой обработки адекватны тем шкалам, к которым отнесена исходная информация.
Дата добавления: 2014-01-05; Просмотров: 1362; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |