Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод условной линеаризации




Аналитические методы расчета

Особенности расчета переходных процессов в нелинейных цепях

Переходные процессы в нелинейных электрических цепях описываются нелинейными дифференциальными уравнениями, общих методов интегрирования которых не существует. На нелинейные цепи не распространяется принцип суперпозиции, поэтому основанные на нем методы, в частности классический или с использованием интеграла Дюамеля, для расчета данных цепей не применимы.

Анализ переходных режимов в электрических цепях требует использования динамических характеристик нелинейных элементов, которые, в свою очередь, зависят от происходящих в них динамических процессов и, следовательно, в общем случае наперед неизвестны. Указанное изначально обусловливает в той или иной степени приближенный характер расчета переходных процессов.

Переходный процесс в нелинейной цепи может характеризоваться переменной скоростью его протекания в различные интервалы времени. Поэтому понятие постоянной времени в общем случае не применимо для оценки интенсивности протекания динамического режима.

Отсутствие общности подхода к интегрированию нелинейных дифференциальных уравнений обусловило наличие в математике большого числа разнообразных методов их решения, нацеленных на различные типы уравнений. Применительно к задачам электротехники все методы расчета по своей сущности могут быть разделены на три группы:

– аналитические методы, предполагающие либо аналитическое выражение характеристик нелинейных элементов, либо их кусочно-линейную аппроксимацию;

– графические методы, основными операциями в которых являются графические построения, часто сопровождаемые вспомогательными вычислительными этапами;

– численные методы, основанные на замене дифференциальных уравнений алгебраическими для приращений переменных за соответствующие интервалы времени.

 

Аналитическими называются методы решения, базирующиеся на аналитическом интегрировании дифференциальных уравнений, описывающих состояние нелинейной цепи с использованием аналитических выражений характеристик нелинейных элементов.

Основными аналитическими методами, используемыми при решении широкого круга задач электротехники, являются:

– метод условной линеаризации;

– метод аналитической аппроксимации;

– метод кусочно-линейной аппроксимации.

 

Метод условной линеаризации применяется в случаях, когда в нелинейном уравнении одно из слагаемых в левой части мало по сравнению с другими, вследствие чего, без внесения существенной погрешности, его можно соответствующим образом линеаризовать. Благодаря этому все уравнение становится линейным для одной из переменных, определяющих характеристику нелинейного элемента, например. С использованием этой характеристики находится затем временная зависимость для второй определяющей ее переменной по алгоритму:

.

Метод отличается простотой, однако получаемое с его использованием решение является достаточно приближенным, вследствие чего он в основном применяется для ориентировочных расчетов.


В качестве примера использования метода определим максимальное значение тока в цепи на рис. 1, если, где;;;. Вебер–амперная характеристика нелинейной катушки индуктивности приведена на рис. 2.

 

 

 

1. Запишем уравнение состояния цепи после коммутации

. (1)

2. Используя метод условной линеаризации, определим второе слагаемое в левой части (1) как

, (2)

где; и - амплитуды потокосцепления и тока в установившемся послекоммутационном режиме;.

3. Подставив (2) в (1), получим линейное дифференциальное уравнение

,

решением которого на основании классического метода расчета переходных процессов является

.

4. Принужденная составляющая определяется соотношением

,

где.

Для определения и предположим (с последующей проверкой), что. При этом условии и. По зависимости для полученного значения найдем.Тогда и, т.е. сделанное выше предположение корректно.

Следует отметить, что в общем случае значения и могут быть определены, например, итерационным методом.

Определив, запишем

.

Поскольку по условию, то.

Таким образом,

. (3)

6. Не решая трансцендентное уравнение, будем считать, что максимальное значение потокосцепления имеет место примерно через полпериода своего изменения, т.е. при. Подставив это время в (3), получим:

 

По кривой для найдем максимальное значение тока, которое в раз превышает амплитуду тока в установившемся послекоммутационном режиме. Напомним, что для линейной цепи

Примечания: 1. Обычно при использовании метода условной линеаризации для расчета переходного процесса при подключении нелинейной катушки индуктивности к источнику синусоидального напряжения эквивалентная линейная индуктивность определяется исходя из амплитудных значений тока и потокосцепления в установившемся послекоммутационном режиме, как это и было сделано в рассмотренном выше примере. Однако если необходимо оценить максимально возможное значение тока, то величину индуктивности следует определять по начальному участку вебер–амперной характеристики, где максимальна.

2. Если сопротивление резистора в ветви с нелинейной катушкой достаточно велико, так что, то следует пренебречь нелинейностью слагаемого, положив. В этом случае нелинейное уравнение (1) сводится к линейному вида

,

и соответственно кривая определяется по кривым и.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.