Постановка: требуется оптимизировать х (формальная постановка)
- функция одной переменной
- целевая функция.
Решение: найти х, при котором принимает оптимальное значение.
2 варианта:
- минимизировать – задача минимизации;
- максимизировать – задача максимизации.
Рассмотрим случай минимизации
2 способа:
- аналитический
- численный
В аналитическомзадается в виде формулы, в численном задается в виде черного ящика, на входе подается х, на выходе значение целевой функции в этой точке.
Пусть функция определена в некоторой области S (), в случае одномерной оптимизации S – интервал :
точка называется глобальным минимумом, если для
точка называется строгим глобальным минимумом, если для
точка называется локальным минимумом, если для
точка называется строгим локальным минимумом, если для
Следствие: любая точка глобального минимума является локальным минимумом, обратное не верно.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление