Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ядерные реакторы

Читайте также:
  1. Лекция 5. Перенапряжения при несимметричных режимах. Способы ограничения перенапряжений – шунтирующие реакторы
  2. Микроядерные ОС
  3. Химические реакторы
  4. Ядерные взрывы
  5. Ядерные реакторы на атомных станциях



Реакции деления

Термоядерные реакции синтеза

В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре около 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ~100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.

 

Нейтрон

Ядерный реактор - устройство, в котором осуществляется управляемая цепная реакция деления, сопровождающаяся выделением энергии. Для этих реакций необходимо наличие в реакторе делящегося вещества, которое при своем распаде выделяет элементарные частицы, способные вызвать распад других ядер.

Деление атомного ядра может произойти самопроизвольно или при попадании в него элементарной частицы. Самопроизвольный распад в ядерной энергетике не используется из-за очень низкой его интенсивности.

В качестве делящегося вещества в настоящее время могут использоваться изотопы урана — уран-235 и уран-238, а также плутоний-239.

В ядерном реакторе происходит цепная реакция. Ядра урана или плутония распадаются, при этом образуются два-три ядра элементов середины таблицы Менделеева, выделяется энергия, излучаются гамма-кванты и образуются два или три нейтрона, которые, в свою очередь, могут прореагировать с другими атомами и, вызвав их деление, продолжить цепную реакцию. Для распада какого-либо атомного ядра необходимо попадание в него элементарной частицы с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Наибольшее значение в ядерной энергетике имеют нейтроны.

В зависимости от скорости элементарной частицы выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов.

Уран-238 делится только быстрыми нейтронами. При его делении выделяется энергия и образуется 2-3 быстрых нейтрона. Вследствие того, что эти быстрые нейтроны замедляются в веществе урана-238 до скоростей, неспособных вызвать деление ядра урана-238, цепная реакция в уране-238 протекать не может.



Поскольку в естественном уране основной изотоп - уран-238, то цепная реакция в естественном уране протекать не может.

В уране-235 цепная реакция протекать может, так как наиболее эффективно его деление происходит, когда нейтроны замедлены в 3-4 раза по сравнению с быстрыми, что происходит при достаточно длинном их пробеге в толще урана без риска быть поглощенными посторонними веществами или при прохождении через вещество, обладающее свойством замедлять нейтроны, не поглощая их.

Поскольку в естественном уране имеется достаточно большое количество веществ, поглощающих нейтроны (тот же уран-238, который при этом превращается в другой делящийся изотоп - плутоний-239), то в современных ядерных реакторах необходимо для замедления нейтронов применять не сам уран, а другие вещества, мало поглощающие нейтроны (например, графит или тяжелая вода).

Обыкновенная вода нейтроны замедляет очень хорошо, но сильно их поглощает. Поэтому для нормального протекания цепной реакции при использовании в качестве замедлителя обыкновенной легкой воды необходимо использовать уран с высокой долей делящегося изотопа - урана-235 (обогащенный уран). Обогащенный уран производят по достаточно сложной и трудоемкой технологии на горно-обогатительных комбинатах, при этом образуются токсичные и радиоактивные отходы.

Графит хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании графита в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды.

Тяжелая вода очень хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании тяжелой воды в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды. Но производство тяжелой воды очень трудоемко и экологически опасно.

При попадании медленного нейтрона в ядро урана-235 он может быть захвачен этим ядром. При этом произойдет ряд ядерных реакций, итогом которых станет образование ядра штутония-239. (Плутоний-239 в принципе может тоже использоваться для нужд ядерной энергетики, но в настоящее время он является одним из основных компонентов начинки атомных бомб.) Поэтому ядерное топливо в реакторе не только расходуется, но и нарабатывается. У некоторых ядерных реакторов основной задачей является как раз такая наработка.

Другим способом решить проблему необходимости замедления нейтронов является создание реакторов без необходимости их замедлять - реакторов на быстрых нейтронах. В таком реакторе основным делящимся веществом является не уран, а плутоний. Уран же (используется уран-238) выступает как дополнительный компонент реакции - от быстрого нейтрона, выпущенного при распаде ядра плутония, произойдет распад ядра урана с выделением энергии и испусканием других нейтронов, а при попадании в ядро урана замедлившегося нейтрона он превратится в плутоний-239, возобновляя тем самым запасы ядерного топлива в реакторе. В связи с малой величиной поглощения нейтронов плутонием цепная реакция в сплаве плутония и урана-238 идти будет, причем в ней будет образовываться большое количество нейтронов.

Таким образом, в ядерном реакторе должен использоваться либо обогащенный уран с замедлителем, поглощающем нейтроны, либо необогащенный уран с замедлителем, мало поглощающем нейтроны, либо сплав плутония с ураном без замедлителя. О различных типах ядерных реакторов, реализующих эти три возможности разными способами, будет говориться дальше.

Содержание урана в земной коре 3÷4∙10-4 %. В природном уране преобладает:

238U – 99,28%;

235U – 0,71%;

234U – 0,006%.

Урана примерно в 1000 раз больше, чем золота, в 30 раз больше, чем серебра, и почти столько же, сколько цинка и свинца.

Известно около 200 урановых и урансодержащих минералов.

 

Физ. св-ва.

1. В чистом виде уран – серебристо-белый металл, на воздухе медленно покрывается черной пленкой оксида, тормозящей дальнейшую коррозию. При нагревании окисление ускоряется.

2. Плотность урана—19,05 г/см3.

3. Слабопарамагнитен.

4. Температура плавления урана около 1405 К, температура кипения — 4090 К.

5. Электропроводность — 2-4·104 (Ом·см)-1.

Хим. св-ва.

1. Металлический уран химически высокоактивен. Он легко реагирует со всеми металлоидами.

2. В виде тонкой пыли на воздухе самовозгорается.

3. При 100о С медленно разлагает воду.

4. В присутствии окислителей растворяется в кислотах.

5. В щелочах не растворим.

Ядерная физика является достаточно молодой научной дисциплиной, и первый ядерный реактор был построен человеком всего 60 лет назад - в 1942 г. Однако, естественные ядерные реакторы существовали на нашей планете еще 2 млрд. лет тому назад. Пока науке известны 17 древних естественных реакторов, расположенных в Габоне - одной из стран экваториальной Африки. Все реакторы были обнаружены в районе урановых месторождений Окло и Бангомбе, которые находятся на юго-востоке Габона. Девять из семнадцати реакторов найдены в полностью выработанных урановых залежах.

Образование природных ядерных реакторов стало возможным благодаря тому, что в столь давние времена на Земле было больше урана-235, чем сегодня. Для протекания ядерной реакции необходимо, чтобы в уране содержалось не менее 3% изотопа-235. Кроме того, необходимо наличие подходящего пространства и отсутствие материалов, захватывающих нейтроны. Время работы габонских реакторов составило примерно 1 млн. лет. В настоящее время возникновение таких реакторов невозможно, поскольку из-за спонтанного распада урана-235 его концентрация в природе невелика.

 

Атомные электростанции относятся к тепловым, так как в их устройстве имеются теп-ловыделители, теплоноситель и генератор электрического тока - турбина. Существуют как одноконтурные АЭС, так и двух-трех-контурные (это зависит от типа ядерного реактора).

 





Дата добавления: 2014-01-05; Просмотров: 422; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.198.58.62
Генерация страницы за: 0.006 сек.