КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
БД, основанные на правилах
БД на инвертированных списках. 14.2. Распределённые БД. 14.1. Основные особенности систем, основанных на инвертированных списках Организация доступа к данным на основе инвертированных списков используется практически во всех современных реляционных СУБД, но в этих системах пользователи не имеют непосредственного доступа к инвертированным спискам (индексам). 14.1.1. Структуры данных База данных, организованная с помощью инвертированных списков, похожа на реляционную БД, но с тем отличием, что хранимые таблицы и пути доступа к ним видны пользователям. При этом: а) Строки таблиц упорядочены системой в некоторой физической последовательности; б) Физическая упорядоченность строк всех таблиц может определяться и для всей БД (так делается, например, в Datacom/DB); в) Для каждой таблицы можно определить произвольное число ключей поиска, для которых строятся индексы. Эти индексы автоматически поддерживаются системой, но явно видны пользователям. 14.1.2. Манипулирование данными Поддерживаются два класса операторов: 1) Операторы, устанавливающие адрес записи, среди которых: - прямые поисковые операторы (например, найти первую запись таблицы по некоторому пути доступа); - операторы, находящие запись в терминах относительной позиции от предыдущей записи по некоторому пути доступа. 2) Операторы над адресуемыми записями. Типичный набор операторов: · LOCATE FIRST - найти первую запись таблицы в физическом порядке; возвращает адрес записи; · LOCATE FIRST WITH SEARCH KEY EQUAL - найти первую запись таблицы с заданным значением ключа поиска; возвращает адрес записи; · LOCATE NEXT - найти первую запись, следующую за записью с заданным адресом в заданном пути доступа; возвращает адрес записи; · LOCATE NEXT WITH SEARCH KEY EQUAL - найти следующую запись таблицы (в порядке пути поиска) с заданным значением К; должно быть соответствие между используемым способом сканирования и ключом K; возвращает адрес записи; · LOCATE FIRST WITH SEARCH KEY GREATER - найти первую запись таблицы в порядке пути поиска со значением ключевого поля, большим заданного значения K; возвращает адрес записи; · RETRIVE - выбрать запись с указанным адресом; · UPDATE - обновить запись с указанным адресом; · DELETE - удалить запись с указанным адресом; · STORE - включить запись в указанную таблицу; операция генерирует адрес записи. 14.1.3. Ограничения целостности Общие правила определения целостности БД отсутствуют. В некоторых системах поддерживаются ограничения уникальности значений некоторых полей, но в основном всё возлагается на прикладную программу. 14.2. Распределённые БД Основная задача систем управления распределёнными базами данных состоит в обеспечении средства интеграции локальных баз данных, располагающихся в некоторых узлах вычислительной сети, с тем, чтобы пользователь, работающий в любом узле сети, имел доступ ко всем этим базам данных как к единой базе данных. При этом должны обеспечиваться: - простота использования системы; - возможности автономного функционирования при нарушениях связности сети или при административных потребностях; - высокая степень эффективности. 14.2.1. Разновидности распределённых систем Возможны однородные и неоднородные распределённые базы данных. В однородном случае каждая локальная база данных управляется одной и той же СУБД. В неоднородной системе локальные базы данных могут относиться даже к разным моделям данных. Сетевая интеграция неоднородных баз данных - это актуальная, но очень сложная проблема. Многие решения известны на теоретическом уровне, но пока не удаётся справиться с главной проблемой - недостаточной эффективностью интегрированных систем. Заметим, что более успешно практически решается промежуточная задача - интеграция неоднородных SQL-ориентированных систем. Понятно, что этому в большой степени способствует стандартизация языка SQL и общее следование производителей СУБД принципам открытых систем. Примером однородных распределенных СУБД может служить System R.
14.2.3. Интегрированные или федеративные системы и мультибазы данных Направление интегрированных или федеративных систем неоднородных БД и мульти-БД появилось в связи с необходимостью комплексирования систем БД, основанных на разных моделях данных и управляемых разными СУБД. Основной задачей интеграции неоднородных БД является предоставление пользователям интегрированной системы глобальной схемы БД, представленной в некоторой модели данных, и автоматическое преобразование операторов манипулирования БД глобального уровня в операторы, понятные соответствующим локальным СУБД. В теоретическом плане проблемы преобразования решены, имеются реализации. При строгой интеграции неоднородных БД локальные системы БД утрачивают свою автономность. После включения локальной БД в федеративную систему все дальнейшие действия с ней, включая администрирование, должны вестись на глобальном уровне. Поскольку пользователи часто не соглашаются утрачивать локальную автономность, желая, тем не менее, иметь возможность работать со всеми локальными СУБД на одном языке и формулировать запросы с одновременным указанием разных локальных БД, развивается направление мульти-БД. В системах мульти-БД не поддерживается глобальная схема интегрированной БД, и применяются специальные способы именования для доступа к объектам локальных БД. Как правило, в таких системах на глобальном уровне допускается только выборка данных. Это позволяет сохранить автономность локальных БД. Как правило, интегрировать приходится неоднородные БД, распределённые в вычислительной сети. Это в значительной степени усложняет реализацию. Дополнительно к собственным проблемам интеграции приходится решать все проблемы, присущие распределённым СУБД: управление глобальными транзакциями, сетевую оптимизацию запросов и т.д. Очень трудно добиться эффективности. Как правило, для внешнего представления интегрированных и мульти-БД используется (иногда расширенная) реляционная модель данных. В последнее время всё чаще предлагается использовать объектно-ориентированные модели, но на практике пока основой является реляционная модель. Поэтому, в частности, включение в интегрированную систему локальной реляционной СУБД существенно проще и эффективнее, чем включение СУБД, основанной на другой модели данных. 14.3. Системы баз данных, основанные на правилах 14.3.1. Экстенсиональная и интенсиональная части базы данных Если внимательно присмотреться к тому, что реально хранится в базе данных, то можно заметить наличие трёх различных видов информации: Во-первых, это информация, характеризующая структуры пользовательских данных (описание структурной части схемы базы данных). Во-вторых, это собственно наборы кортежей пользовательских данных, сохраняемых в определенных пользователями отношениях. Наконец, в-третьих, это правила, определяющие ограничения целостности базы данных, триггеры базы данных и представляемые (виртуальные) отношения. Информация первого и второго вида в совокупности явно описывает объекты (сущности) реального мира, моделируемые в базе данных. Другими словами, это явные факты, предоставленные пользователями для хранения в БД. Эту часть базы данных принято называть экстенсиональной. Информация третьего вида служит для руководства СУБД при выполнении различного рода операций, задаваемых пользователями. Эту часть базы данных принято называть интенсиональной; она содержит не непосредственные факты, а информацию, характеризующую семантику предметной области. В реляционных базах данных наиболее важное значение имеет экстенсиональная часть, а интенсиональная часть играет, в основном, вспомогательную роль. В системах баз данных, основанных на правилах, эти две части как минимум равноправны. 14.3.2. Активные базы данных БД называется активной, если СУБД по отношению к ней выполняет не только те действия, которые явно указывает пользователь, но и дополнительные действия в соответствии с правилами, заложенными в саму БД. 14.3.3. Дедуктивные базы данных Дедуктивная БД состоит из двух частей: экстенциональной, содержащей факты, и интенциональной, содержащей правила для логического вывода новых фактов на основе экстенциональной части и запроса пользователя. Основным отличием реальной дедуктивной СУБД от реляционной является то, что и правила интенциональной части БД, и запросы пользователей могут содержать рекурсию. Лекция 15. Объектно-ориентированные СУБД. Часть 1.
Дата добавления: 2014-01-05; Просмотров: 927; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |