КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные определения теории биматричных игр
Лекция № 4. Биматричные игры. Цель: изучить особенности решения биматричных игр. Ключевые слова: биматричная игра, решение биматричной игры, чистая и смешанная стратегия в биматричной игре. Вопросы: 1. Основные определения теории биматричных игр 2. Смешанные стратегии в биматричных играх 3. Ситуация равновесия в биматричных играх.
Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения: игрок А – может выбрать любую из стратегий А1,..., Ат, игрок В – любую из стратегий В1, …, Вn При этом всякий раз их совместный выбор оценивается вполне определенно: если игрок А выбрал i -ю стратегию , а игрок В – k-ю стратегию , то в итоге выигрыш игрока А будет равен некоторому числу , а выигрыш игрока В некоторому, вообще говоря, другому числу . Иными словами, всякий раз каждый из игроков получает свой приз. Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы (первая из них описывает выигрыши игрока А, а вторая – выигрыши игрока В).
Обычно эти таблицы записывают в виде матриц
Здесь А – платежная матрица игрока А, а В – платежная матрица игрока В. При выборе игроком А i -й стратегии, а игроком В – k -й стратегии их выигрыши находятся в матрицах выплат на пересечении i -х строк и k -x столбцов: в матрице А это элемент , а в матрице В – элемент . Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны), получаются две платежные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игре – биматричная. Замечание. Рассматриваемые матричные игры, можно рассматривать и как биматричные, где матрица выплат игроку В противоположна матрице выплат А:
В общем случае биматричная игра – это игра с ненулевой суммой. Класс биматр. игр значительно шире класса матричных (разнообразие новых моделируемых конфликтных ситуаций весьма заметно), а, значит, неизбежно увеличиваются и трудности, встающие на пути их успешного разрешения. Пример. «Студент — Преподаватель». Рассмотрим следующую ситуацию. Студент (игрок А) готовится к зачету, который принимает Преподаватель (игрок В). Можно считать, что у Студента две стратегии – подготовиться к сдаче зачета (+) и не подготовиться (-). У Преподавателя также две стратегии – поставить зачет [+] и не поставить зачета [-]. В основу значений функций выигрыша игроков положим следующие соображения:
Количественно это можно выразить, например, так
Дата добавления: 2014-01-05; Просмотров: 722; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |