КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Производные критерии
Классические критерии принятия решений. а) Минимаксный критерий. Правило выбора решения в соответствии с минимаксным критерием (ММ-критерием) можно интерпретировать следующим образом: матрица решений дополняется ещё одним столбцом из наименьших результатов eir каждой строки. Необходимо выбрать те варианты в строках которых стоят наибольшее значение eir этого столбца. Выбранные т.о. варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Это свойство позволяет считать ММ-критерий одним из фундаментальных. Применение ММ-критерия бывает оправдано, если ситуация, в которой принимается решение следующая: 1o. О возможности появления внешних состояний Fj ничего не известно; 2o. Приходится считаться с появлением различных внешних состояний Fj; 3o. Решение реализуется только один раз; 4o. Необходимо исключить какой бы то ни было риск.
б) Критерий Байеса - Лапласа. Обозначим через qi вероятность появления внешнего состояния Fj. Соответствующее правило выбора можно интерпретировать следующим образом: матрица решений дополняется ещё одним столбцом содержащим математическое ожидание значений каждой из строк. Выбираются те варианты, в строках которых стоит наибольшее значение eir этого столбца. При этом предполагается, что ситуация, в которой принимается решение, характеризуется следующими обстоятельствами: 1о. Вероятности появления состояния Fj известны и не зависят от времени. 2о. Решение реализуется (теоретически) бесконечно много раз. 3о. Для малого числа реализаций решения допускается некоторый риск. При достаточно большом количестве реализаций среднее значение постепенно стабилизируется. Поэтому при полной (бесконечной) реализации какой-либо риск практически исключён. Т.о. критерий Байеса-Лапласа (B-L-критерий) более оптимистичен, чем минимаксный критерий, однако он предполагает большую информированность и достаточно длительную реализацию.
в) Критерий Сэвиджа. Величину aij можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Fj вместо варианта Ei выбирать другой, оптимальный для этого внешнего состояния вариант. Величину aij можно интерпретировать и как потери (штрафы) возникающие в состоянии Fj при замене оптимального для него варианта на вариант Ei. В последнем случае eir представляет собой максимально возможные (по всем внешним состояниям Fj, j =) потери в случае выбора варианта Ei. Соответствующее критерию Сэвиджа правило выбора теперь трактуется так: 1). Каждый элемент матрицы решений вычитается из наибольшего результата max eij соответствующего столбца. 2). Разности aij образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей eir. Выбирают те варианты, в строках которых стоит наименьшее для этого столбца значение. Требования, предъявляемые к ситуации, в которой принимается решение, совпадают с требованием к ММ-критерию. Из требований, предъявляемых к рассмотренным критериям становится ясно, что в следствии их жёстких исходных позиций они применимы только для идеализированных практических решений. В случае, когда возможна слишком сильная идеализация, можно применять одновременно поочерёдно различные критерии. После этого среди нескольких вариантов ЛПР волевым методом выбирает окончательное решение. Такой подход позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабляет влияние субъективного фактора. Пример. При работе ЭВМ необходимо периодически приостанавливать обработку информации и проверять ЭВМ на наличие в ней вирусов. Приостановка в обработке информации приводит к определённым экономическим издержкам. В случае же если вирус вовремя обнаружен не будет, возможна потеря и некоторой части информации, что приведёт и ещё к большим убыткам. Варианты решения таковы: Е1-полная проверка; Е2- минимальная проверка; Е3- отказ от проверки. ЭВМ может находиться в следующих состояниях: F1- вирус отсутствует; F2- вирус есть, но он не успел повредить информацию; F3- есть файлы, нуждающиеся в восстановлении. Результаты, включающие затраты на поиск вируса и его ликвидацию, а также затраты, связанные с восстановлением информации имеют вид: Таблица 1.
Согласно ММ-критерию следует проводить полную проверку. Критерий Байеса-Лапласа, в предположении, что все состояния машины равновероятны. P(Fj) = qj = 0.33, рекомендуется отказаться от проверки. Матрица остатков для этого примера и их оценка (в тысячах) согласно критерию Сэвиджа имеет вид:
Пример специально подобран так, что каждый критерий предлагает новое решение. Неопределённость состояния, в котором проверка застаёт ЭВМ, превращается в неясность, какому критерию следовать. Поскольку различные критерии связаны с различными условиями, в которых принимается решение, лучшее всего для сравнительной оценки рекомендации тех или иных критериев получить дополнительную информацию о самой ситуации. В частности, если принимаемое решение относится к сотням машин с одинаковыми параметрами, то рекомендуется применять критерий Байеса-Лапласа. Если же число машин не велико, лучше пользоваться критериями минимакса или Сэвиджа.
а) Критерий Гурвица. Стараясь занять наиболее уравновешенную позицию, Гурвиц предположил оценочную функцию, которая находится где-то между точкой зрения крайнего оптимизма и крайнего пессимизма: eir = {Ceij + (1- C) eij }, где С весовой множитель. Правило выбора согласно критерию Гурвица, формируется следующим образом: матрица решений дополняется столбцом, содержащим среднее взвешенное наименьшего и наибольшего результатов для каждой строки. Выбираются только те варианты, в строках которых стоят наибольшие элементы eir этого столбца. При С=1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий азартного игрока eir = eij, т.е. мы становимся на точку зрения азартного игрока, делающего ставку на то, что «выпадет» наивыгоднейший случай. В технических приложениях сложно выбрать весовой множитель С, т.к. трудно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего С:= 1/2. Критерий Гурвица применяется в случае, когда: о вероятностях появления состояния Fj ничего не известно; с появлением состояния Fj необходимо считаться; реализуется только малое количество решений; допускается некоторый риск.
б) Критерий Ходжа-Лемана. Этот критерий опирается одновременно на ММ-критерий и критерий Баеса-Лапласа. С помощью параметра n выражается степень доверия к используемому распределений вероятностей. Если доверие велико, то доминирует критерий Баеса-Лапласа, в противном случае ММ-критерий, т.е. мы ищем eir = {n + (1-n) eir}, 0 £ n £ 1. Правило выбора, соответствующее критерию Ходжа-Лемана формируется следующим образом: матрица решений дополняется столбцом, составленным из средних взвешенных (с весом n º const) математическое ожиданиями и наименьшего результата каждой строки (*). Отбираются те варианты решений в строках которого стоит набольшее значение этого столбца.
При n = 1 критерий Ходжа-Лемана переходит в критерий Байеса-Лапласа, а при n = 0 становится минимаксным. Выбор n субъективен т. к. Степень достоверности какой-либо функции распределения дело тёмное. Для применения критерия Ходжа-Лемана желательно, чтобы ситуация в которой принимается решение, удовлетворяла свойствам: вероятности появления состояния Fj неизвестны, но некоторые предположения о распределении вероятностей возможны; принятое решение теоретически допускает бесконечно много реализаций; при малых числах реализации допускается некоторый риск.
в) Критерий Гермейера. Этот критерий ориентирован на величину потерь, т.е. на отрицательные значения всех eij. При этом eir = eij qj. Т.к. в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условие eij<0 обычно выполняется. В случае же, когда среди величин eij встречаются и положительные значения, можно перейти к строго отрицательным значениям с помощью преобразования eij - a при подходящем образом подобранном a > 0. При этом оптимальный вариант решения зависит от а. Правило выбора согласно критерию Гермейера формулируется следующим образом: матрица решений дополняется ещё одним столбцом содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния Fj. Выбираются те варианты в строках которых находится наибольшее значение eij этого столбца. В каком-то смысле критерий Гермейера обобщает ММ-критерий: в случае равномерного распределения qj = , j =, они становятся идентичными. Условия его применимости таковы: вероятности появления состояния Fj неизвестны; с появлением тех или иных состояний, отдельно или в комплексе, необходимо считаться; допускается некоторый риск; решение может реализоваться один или несколько раз. Если функция распределения известна не очень надёжно, а числа реализации малы, то, следуя критерию Гермейера, получают, вообще говоря, неоправданно большой риск.
г). BL (MM) - критерий.
Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса. Правило выбора для этого критерия формулируется следующим образом: матрица решений дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором - разность между опорным значением и наименьшим значением соответствующей строки. В третьем столбце помещаются разности между наибольшим значением каждой строки и наибольшим значением той строки, в которой находится значение . Выбираются те варианты, строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение из второго столбца должно быть или равно некоторому заранее заданному уровню риска . Значение же из третьего столбца должно быть больше значения из второго столбца. Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение: вероятности появления состояний Fj неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения; необходимо считаться с появлением различных состояний как по отдельности, так и в комплексе; допускается ограниченный риск; принятое решение реализуется один раз или многократно. BL(MM)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и может считаться достаточно надежным. Однако заданные границы риска и, соответственно, оценок риска не учитывает ни число применения решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью. Условие существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих условиях недостаточно ориентироваться на риск, связанный только с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые потери в удачных внешних состояниях. При большом числе реализаций это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы. При этом не известно, однако, четких количественных указаний, в каких случаях это условие следовало бы опускать.
д ) Критерий произведений.
eir: = eij Правило выбора в этом случае формулируется так: Матрица решений дополняется новым столбцом, содержащим произведения всех результатов каждой строки. Выбираются те варианты, в строках которых находятся наибольшие значения этого столбца.
Применение этого критерия обусловлено следующими обстоятельствами: вероятности появления состояния Fj неизвестны; с появлением каждого из состояний Fj по отдельности необходимо считаться; критерий применим и при малом числе реализаций решения; некоторый риск допускается. Критерий произведений приспособлен в первую очередь для случаев, когда все eij положительны. Если условие положительности нарушается, то следует выполнять некоторый сдвиг eij + а с некоторой константой а ïeijï. Результат при этом будет, естественно зависеть от а. На практике чаще всего а:= ïeijï+1. Если же никакая константа не может быть признана имеющей смысл, то критерий произведений не применим.
5о. Пример. Рассмотрим тот же пример (табл. 1). Построение оптимального решения для матрицы решений о проверках по критерию Гурвица имеет вид (при С =0.5, в 103):
В данном примере у решения имеется поворотная точка относительно весового множителя С: до С = 0.57 в качестве оптимального выбирается Е3, а при больших значениях Е1. Применение критерия Ходжа-Лемана (q = 0.33, n = 0.5, в 103):
Критерий Ходжа-Лемана рекомендует вариант Е1 (полная проверка) так же как и ММ-критерий. Смена рекомендуемого варианта происходит только при n = 0.94. Поэтому равномерное распределение состояний рассматриваемой машины должно распознаваться с очень высокой вероятностью, чтобы его можно было выбрать по большему математическому ожиданию. При этом число реализаций решения всегда остаётся произвольным. Критерий Гермейера при qj = 0.33 даёт следующий результат (в ):
В качестве оптимального выбирается вариант Е1. Сравнение вариантов с помощью величин eir показывает, что способ действия критерия Гермейера является даже более гибким, чем у ММ-критерия. В таблице, приведенной ниже, решение выбирается в соответствии с BL(MM)-критерием при q1=q2=q3=1/2 (данные в 103).
Вариант Е3 (отказ от проверки) принимается этим критерием только тогда, когда риск приближается к . В противном случае оптимальным оказывается Е1. Во многих технических и хозяйственных задачах допустимый риск бывает намного ниже, составляя обычно только незначительный процент от общих затрат. В подобных случаях бывает особенно ценно, если неточное значение распределения вероятностей сказывается не очень сильно. Если при этом оказывается невозможным установить допустимый риск заранее, не зависимо от принимаемого решения, то помочь может вычисление ожидаемого риска . Тогда становится возможным подумать, оправдан ли подобный риск. Такое исследование обычно дается легче. Результаты применения критерия произведения при а = 41×103 и а = 200×103 имеют вид:
Условие eij > 0 для данной матрицы не выполнимо. Поэтому к элементам матрицы добавляется (по внешнему произволу) сначала а = 41×103, а затем а = 200×103. Для а = 41×103 оптимальным оказывается вариант Е1, а для а = 200×103 вариант Е3, так что зависимость оптимального варианта от а очевидна.
Вопросы для самоконтроля: 1. Как системно описывается задача принятия решения в условиях неопределенности? 2. Что такое управляющая подсистема, что такое среда? 3. Какими факторами определяется состояние системы? 4. Сформулируйте математическую модель задачи принятия решения в условиях неопределенности. Что такое функция полезности (выигрыша)? Что такое условие неопределенности? 5.Как задают функцию выигрыша при условии конечности множеств стратегий и состояний? 6.Какова основная цель задачи принятия решения? 7.Как в теории игр называют задачу принятия решения в условиях неопределенности? 8.Что понимают под оптимальной стратегией игрока? 9.Как задают игру в случае, если множества X и Y конечны? 10.Какие имеются способы сравнения двух стратегий? 11.Что такое принцип доминирования? 12.Каков основной метод, позволяющий найти оптимальную стратегию в ЗПР в условиях неопределенности? Какая стратегия считается оптимальной? 13.Что такое критерий для сравнения стратегий? 14.Каковы важнейшие критерии, используемые для задач принятия решений в условиях неопределенности? На каких гипотезах они основаны? Список литературы
Основная:
Дополнительная:
Дата добавления: 2014-01-05; Просмотров: 1851; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |