![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 3. Сколькими способами можно разбить конечное множество Х, где , на подмножества, среди которых для каждого i=1
Сколькими способами можно разбить конечное множество Х, где Теорема 3. Доказательство. Каждое из неупорядоченных разбиений, рассмотренных при определении величины
где При этом объединение получаемых таким образом попарно непересекающихся множеств является совокупностью всех возможных разбиений множества Х. Следовательно, по правилу суммы, используя теорему 1, получим: (где суммирование производится по всем рассматриваемым неупорядоченным разбиениям), откуда и следует справедливость доказываемого утверждения. Пример 4. Сколькими способами из группы в 25 человек можно сформировать 5 коалиций по 5 человек? Пусть Х – множество людей в группе,
Дата добавления: 2014-01-05; Просмотров: 1036; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |