КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Цепь переменного тока с индуктивностью
Пусть в цепи переменного тока (рис 2.15) с индуктивной катушкой L без ферромагнитного сердечника проходит синусоидальный ток i =(рис.2.16). В результате, вокруг катушки возникает магнитное поле, и в катушке наводится ЭДС самоиндукции . При r = 0 напряжение источника - . Так как , тогда . (2.12) Пусть , где - индуктивное сопротивление. Действительно, если , то измеряется в Омах, если измеряется в . Сопоставляя выражения для мгновенных значений тока и напряжения в цепи с индуктивностью, имеем: i = 0; u =, откуда угол сдвига фаз = u - i =. Рис.2.15. Цепь переменного тока с индуктивностью
Рис.2.16. Зависимости мгновенных значений напряжения, тока и мощности цепи переменного тока с индуктивностью
Рис.2.16 показывает, что ток в цепи с индуктивностью отстаёт от напряжения на угол . Для действующих значений напряжения и тока , тогда закон Ома для рассматриваемой цепи имеет выражение:
, (2.13) а векторные диаграммы в векторном и комплексном виде представлены на рис. 2.17. Мгновенная мощность цепи переменного тока с индуктивностью . Так как и , то окончательно имеем: (2.14)
Рис.2.17. Векторные диаграммы действующих значений тока и напряжения цепи переменного тока с индуктивностью в векторном и комплексном виде
Следовательно, p является переменной величиной, изменяющейся синусоидально с частотой вдвое больше частоты переменного тока (рис.2.16). Четверть периода мгновенная мощность положительна, четверть периода отрицательна. При положительном значении мощности мгновенный ток возрастает и происходит накопление энергии магнитного поля индуктивности. При отрицательном значении мощности мгновенный ток уменьшается и энергия, накопленная в индуктивности, возвращается к источнику. Таким образом, в цепи с индуктивностью происходит обмен энергии между источником и магнитным полем индуктивности без затраты энергии источника, то есть средняя мощность или активная мощность P = Pср = 0. Для количественной характеристики интенсивности обмена энергией между источником и катушкой служит реактивная индуктивная мощность, равная амплитуде колебаний: . (2.15) Единицей реактивной индуктивной мощности является вольт-ампер реактивный (вар).
2.5. Цепь переменного тока с ёмкостью Проанализируем процессы в цепи переменного тока, представленной на рис.2.18. Зададимся напряжением на зажимах источника , тогда ток в цепи с ёмкостью так же будет меняться по синусоидальному закону. Ток определяется по формуле . Количество электричества Q конденсатора связано с напряжением на ёмкости и его ёмкостью: . Следовательно,
Рис.2.18. Цепь переменного тока с ёмкостью
(2.16) Таким образом, ток в цепи с ёмкостью опережает по фазе напряжение на угол (рис. 2.19).
Рис.2.19. Зависимости мгновенных значений напряжения, тока и мощности цепи переменного тока с ёмкостью
Сопоставляя значения для мгновенного тока и напряжения в цепи с ёмкостью, из рис.2.19 имеем: . Из формулы (2.16) выведем закон Ома для амплитудных значений: или . (2.17)
Введем обозначение: , где - емкостное сопротивление.
Действительно, если , то измеряется в Омах. Закон Ома для действующих значений напряжения и тока имеет выражение: . (2.18) Для комплексных чисел закон Ома записывается в виде . (2.19) Диаграммы в векторном и комплексном видах представлены на рис. 2.20.
Рис.2.20. Векторные диаграммы действующих значений тока и напряжения цепи переменного тока с ёмкостью в векторном и комплексном виде
Так как напряжение на ёмкости отстает от тока на угол , который изменяется по косинусоиде, то мгновенную мощность выразим в виде: , (2.20) где Мгновенная мощность p имеет частоту 2ω, но в отличие от индуктивности, здесь мощность положительна, пока возрастает напряжение на ёмкости. Происходит накопление энергии электрического поля на конденсаторе. Затем конденсатор разряжается на источник, и мощность становится отрицательной. Из рис. 2.19 видно, что средняя или активная мощность P = Pср= 0. Амплитуда колебаний мощности в цепи с ёмкостью называют реактивной емкостной мощностью: . (2.21) Единицей реактивной емкостной мощности является вольт-ампер реактивный (вар).
Дата добавления: 2014-01-05; Просмотров: 564; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |