КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 30. Неравенства с двумя переменными
План: 1. Неравенства с двумя переменными. Способы решения системы двух неравенств с двумя переменными: аналитический способ и графический способ. 2. Системы двух неравенств с двумя переменными: запись результата решения. 3. Совокупности неравенств с двумя переменными.
НЕРАВЕНСТВА И СИСТЕМЫ НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕННЫМИ. Предикат вида f₁(х, у)>< f2(х, у), хÎХ, уÎ У, где f₁(х, у) и f2(х, у) - выражения с переменными х и у, определенные на множестве ХхУ называется неравенством с двумя переменными (с двумя неизвестными) х и у. Ясно, что любое неравенство вида с двумя переменными можно записать в виде f(х, у) > 0, хÎХ, уÎ У. Решением неравенства с двумя переменными называется пара значений переменных, обращающая неравенство в верное числовое неравенство. Известно, что пара действительных чисел (х, у) однозначно определяет точку координатной плоскости. Это дает возможность изобразить решения неравенства или системы неравенств с двумя переменными геометрически, в виде некоторого множества точек координатной плоскости. Если уравнение. f(х, у) = 0 определяет некоторую линию на координатной плоскости, то множество точек плоскости, не лежащих на этой линии, состоит из конечного числа областей С₁, С2,..., Сп (рис. 17.8). В каждой из областей С, функция f(х, у) отлична от нуля, т.к. точки, в которых f(х, у) = 0 принадлежат границам этих областей.
Теорема 17.6. В каждой из областей G (/ = 1,2,...), на которые линия f(х, у) = 0 делит координатную плоскость, функция f(х, у) либо положительна, либо отрицательна. Доказательство этой теоремы опускается. Пример 17.14. Изобразите на координатной плоскости множество решений неравенства у{у + 2) < х + 3. Решение. Преобразуем неравенство к виду х > у2 + 2у - 3. Построим на координатной плоскости параболу х = у2 + 2у - 3. Она разобьет плоскость на две области G₁ и G 2 (рис. 17.9). Так как абсцисса любой точки, лежащей правее параболы х = у2 + 2у - 3, больше, чем абсцисса точки, имеющей ту же ординату, но лежащей на параболе, и т.к. неравенство х>уг + 2у -3 нестрогое, то геометрическим изображением решений данного неравенства будет множество точек плоскости, лежащих на параболе х = у2 + 2у - 3 и правее нее (рис. 17.9).
Рис. 17.10 Пример 17.15. Изобразите на координатной плоскости множество решений системы неравенств х > 0, у > 0, ху > 5, х + у <6. Решение. Геометрическим изображением решения системы неравенств х > 0, у > 0 является множество точек первого координатного угла. Геометрическим изображением решений неравенства х + у < 6 или у < 6 - х является множество точек, лежащих ниже прямой и на самой прямой, служащей графиком функции у = 6 - х. Геометрическим изображением решений неравенства ху > 5 или, поскольку х > 0 неравенства у > 5/х является множество точек, лежащих выше ветви гиперболы, служащей графиком функции у = 5/х. В итоге получаем множество точек координатной плоскости, лежащих в первом координатном углу ниже прямой, служащей графиком функции у = 6 - х, и выше ветви гиперболы, служащей графиком функции у = 5х (рис. 17.10). Глава III. НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ
Дата добавления: 2014-01-06; Просмотров: 1284; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |