Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Этапы решения задачи на построение

Читайте также:
  1. Ethernet - пример стандартного решения сетевых проблем
  2. I и II задачи имеют решение.
  3. I. Разработка алгоритма решения
  4. II. Мирные средства разрешения международных споров.
  5. II. Цели, задачи и принципы студенческого самоуправления
  6. II. Этапы становления государственности в России
  7. SMART-анализ в процессе разработки управленческого решения
  8. Аксиоматическое построение теории вероятностей.
  9. Алгоритм решения задачи 2.
  10. Алгоритм решения задачи 3.
  11. Алгоритм решения ЗЛЦП
  12. Алгоритм решения канонической задачи ЛП симплексным методом.



Упражнения

 

1. Постройте с помощью циркуля и линейки сумму и разность двух данных: а) отрезков; б) углов.

2. Разделите данный угол на 4 равных части.

3. Дан треугольник АВС. Постройте другой, равный ему, треуголь­ник АВD.

4. Постройте окружность данного радиуса, проходящую через две данные точки.

 

Решение задачи на построение обычно включает четыре этапа:

анализ, построение, доказательство и исследование. Рассмотрим каж­дый из них в отдельности.

1. Анализ. На этом этапе осуществляется поиск решения задачи. Его конечная цель - установление последовательности, алгоритма, состоящего из основных или элементарных построений, приводящих к построению искомой фигуры. Как и решение геометрической задачи на вычисление и доказательство, поиск такого алгоритма сопровож­дается чертежом, иллюстрацией, помогающими установить связи и зависимости между данными и искомыми фигурами.

2. Построение. Этот этап решения представляет собой непосредст­венную реализацию на чертеже найденного алгоритма с помощью выбранных инструментов построения.

3. Доказательство. Его цель - доказательство того, что построен­ная на предыдущем этапе фигура действительно искомая, т.е. удовле­творяет всем поставленным в задаче условиям.

4. Исследование. Этот этап решения состоит в выяснении того, всег­да ли задача имеет решение; если не всегда, то при каких конкретных данных и сколько именно решений она имеет. При этом разными счи­таются решения, дающие неравные фигуры (или если и равные, то различно расположенные относительно фигуры, с которой связыва­лось построение).

Проиллюстрируем эти этапы на конкретном примере.

Задача. Построить параллелограмм по ос­нованию а, высоте h и одной из диагоналей d.

Согласно условию, данными являются отрез­ки, представляющие основание, высоту и диагональ параллелограмма (рис.). Все эти фигуры считаются уже построенными, и поэтому объяснение не требуется.

1. Анализ. Выполним чертеж-иллюстрацию, считая, что иско­мый параллелограмм АВСD уже построен (рис.). Отмечаем на чертеже данные элементы: ВС = а, ВН = h, DВ=d.

 

Устанавливаем связи и зависимости между элементами параллелограмма. От­мечаем, что противоположные стороны АВ и лежат на параллельных прямых, расстояние между которыми равно высоте h. Поэтому можно построить треугольник АВD и затем достроить его до параллело­грамма АВСD. Получим следующий алгоритм построения искомой фигуры:

1) Строим параллельные прямые МК и РQ на расстоянии h друг от друга.

2) На прямой МК откладываем отрезок АD = а.

3) Из точки D, как из центра, радиусом d проводим окружность и находим точку В ее пересечения с прямой РQ.



4) На луче ВQ откладываем отрезок ВС = а.

5) Строим отрезки АВ и СD.

2. Построение. Все этапы алгоритма построения выполняем циркулем и линейкой непосредственно на чертеже с использованием заданных элементов (рис. 157).

3. Доказательство. Рассмотрим четырехугольник АВСD. Его противоположные стороны АD и ВС параллельны, так как лежат на па­раллельных прямых МК и РQ. Эти же стороны равны по построению:

АD = ВС = а. Значит, АВСD - параллелограмм, у которого АD = а, ВD = d, а высота равна h, так как расстояние между параллельными прямыми МК и РQ равно h (по построению). Следовательно, АВСD -искомый параллелограмм.

4. Исследование. Проверим возможность построения паралле­лограмма АВСD непосредственно по шагам алгоритма построения.

1) Параллельные прямые МК и РQ на расстоянии h всегда можно построить, и притом единственным образом.

2) Построить отрезок АD = а на прямой МК также всегда можно, и притом единственным образом.

3) Окружность, проведенная из центра D радиусом d, будет иметь общие точки с прямой РQ только тогда, когда d ≥ h. Если d = h, то по­лучится одна общая точка В, если же d > h, то две общие точки В и В'.

5) Эти построения всегда однозначно выполнимы. Таким образом, решение возможно, если d ≥ h. Если d = h, то зада­ча имеет единственное решение, если же d > h, то два решения.





Дата добавления: 2014-01-06; Просмотров: 1270; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.81.210.99
Генерация страницы за: 0.006 сек.