Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), может быть представлен в виде ряда Фурье по тригонометрическим функциям:
.
Это выражение указывает на то, что периодическая функция x(t), имеющая период Т может быть разложена по sin и cos углов, кратных углу .
Если период функции x(t) равен Т, то основная круговая частота будет , тогда в формуле разложения x(t) значения коэффициентов a0, ak, bk определяется формулами:
k= 1, 2, 3
Зная коэффициенты ak и bk, можно определить значения амплитуды и начальной фазы j k-й гармоники.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление