Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Помехоустойчивость кода

 

Минимальное кодовое расстояние некоторого кода определяется как минимальное расстояние Хэмминга между любыми разрешенными кодовыми словами этого кода. У безызбыточного кода минимальное кодовое расстояние dmin=1. Чем больше минимальное кодовое расстояние, тем больше избыточность кода. Максимальное кодовое расстояние кода, очевидно, равно его размеру, т.е. числу двоичных разрядов в кодовом слове.

Очевидно, что -кратная ошибка приводит к тому, что искаженная кодовая комбинация отодвигается от исходной на расстояние . В то же время ошибка не может быть обнаружена, если она переводит одну разрешенную кодовую комбинацию в другую, тоже разрешенную. Следовательно, способность кода обнаруживать все ошибки некоторой кратности зависит от минимального расстояния между разрешенными кодовыми словами: чем больше минимальное кодовое расстояние, тем большей кратности требуется ошибка для перевода любой разрешенной кодовой комбинации в другую разрешенную. Код с минимальным кодовым расстоянием dmin способен обнаруживать любые ошибки кратностью

Способность кода исправлять обнаруженные ошибки состоит в возможности однозначного отнесения запрещенной кодовой комбинации к единственной разрешенной. Для этого необходимо, чтобы минимальное кодовое расстояние превышало расстояние, порождаемое действием двух любых ошибок. Действительно, в этом случае запрещенные кодовые комбинации, получающиеся в результате ошибок из одного кодового слова, никогда не совпадут с запрещенными комбинациями, получающимися в результате ошибок из любого другого кодового слова, а тем более – с другими разрешенными кодовыми словами. Таким образом, необходимо, чтобы выполнялось условие откуда следует

Рассмотрим n -разрядный код, основанный на n- кратном повторении каждого передаваемого символа. У него dmin= n. Следовательно, максимальная кратность обнаруживаемых ошибок равна n-1, что соответствует случаю искажения всех символов, кроме одного. Максимальная кратность исправляемых ошибок равна (n-1) /2, что соответствует искажению «почти» половины всех символов. Это соответствует фиксации ошибки при обнаружении хотя бы одного неодинакового символа и исправлению ошибки на основе определения, каких значений больше.

Рассмотрим n -разрядный код, основанный на введении одного разряда контроля четности. У него dmin= 2, и, следовательно, максимальная кратность обнаруживаемых ошибок равна 1, а исправляемых – 0 (код не способен исправлять ошибки).

 

<== предыдущая лекция | следующая лекция ==>
Информационные основы контроля работы цифровых автоматов | Метод контрольных сумм
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 356; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.