Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электромагнитные поля и излучения

Источники ЭМП и классификация электромагнитных излучений.

Спектр электромагнитных колебаний по частоте охватывает свыше 20 порядков, от 5 10-3 до 1021 Гц.

В зависимости от энергии фотонов его подразделяют на область неионизирующих и ионизирующих излучений (5).

К неионизирующим излучениям в гигиенической практике относят также электрические и магнитные поля.

Естественными источниками электромагнитных полей и излучений являются:

атмосферное· электричество;

радиоизлучения солнца и· галактик;

электрическое и магнитное· поля Земли.

Источниками искусственных полей и излучений разной интенсивности являются все промышленные и бытовые электро– и радиоустановки.

Электростатические поля (26) возникают при работе с легко электризующимися материалами и изделиями, при эксплуатации высоковольтных установок постоянного тока.

Источниками постоянных магнитных полей являются: электромагниты, соленоиды, магнитопроводы в электрических машинах и аппаратах, литые и металлокерамические магниты, используемые в радиотехнике.

Источниками электрических полей (24) промышленной частоты (50 Гц) являются: линии электропередач, открытые распределительные устройства, включающие коммутационные аппараты, устройства защиты и автоматики, измерительные приборы, сборные, соединительные шины, вспомогательные устройства, а также все высоковольтные установки промышленной частоты.

Магнитные поля (8) промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Чем больше ток, тем выше интенсивность магнитного поля.

Источниками электромагнитных излучений (25) радиочастот являются мощные радиостанции, антенны, генераторы сверхвысоких частот, установки индукционного и диэлектрического нагрева, радары, измерительные и контролирующие устройства, исследовательские установки, высокочастотные приборы и устройства в медицине и в быту.

Источниками электростатического поля (26) и электромагнитных излучений (25) в широком диапазоне частот (сверх− и инфранизкочастотном, радиочастотном, инфракрасном, видимом, ультрафиолетовом, рентгеновском) являются персональные электронно − вычислительные машины (ПЭВМ), видеодисплейные терминалы (ВДТ) на электронно−лучевых трубках, используемые как в промышленности, научных исследованиях, так и в быту. Главную опасность для пользователей представляет электромагнитное излучение монитора в диапазоне частот 20 Гц − 300 МГц и статический электрический заряд на экране.

Источником повышенной опасности в быту с точки зрения электромагнитных излучений являются также микроволновые печи, телевизоры любых модификаций, радиотелефоны. В настоящее время признаются источниками риска в связи с последними данными о воздействии магнитных полей промышленной частоты: электроплиты с электроподводкой, электрогрили, утюги, холодильники (при работающем компрессоре).

Воздействие на человека статических электрических и магнитных полей, электромагнитных полей промышленной частоты, электромагнитных полей радиочастот

Экспериментальные данные отечественных и зарубежных исследователей свидетельствуют о высокой биологической активности электромагнитных полей во всех частотных диапазонах.

При относительно высоких уровнях облучающего электромагнитного поля современная теория признает тепловой механизм воздействия. При относительно низком уровне электромагнитных излучений (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом, или информационном, характере воздействия на организм.

Механизмы действия электромагнитных полей в этом случае еще мало изучены.

Наиболее ранними клиническими проявлениями последствий воздействия электромагнитного излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся, прежде всего, в виде вегетативных дисфункций неврастенического и астенического синдрома.

Лица, длительное время находившиеся в зоне электромагнитного излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна.

Нарушения со стороны сердечно–сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др.

Отмечаются также фазовые изменения состава периферической крови и изменения в костном мозге. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием электромагнитного излучения с достаточно большой интенсивностью.

Работающие с электромагнитными полями, а также население, живущее в зоне действия электромагнитных полей, жалуются на раздражительность, нетерпеливость. Через 1–3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость.

Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых электромагнитных излучений (особенно в дециметровом диапазоне волн) может повести к психическим расстройствам.

Переменное поле вызывает нагрев тканей человека, как за счет переменной поляризации диэлектрика, так и за счет появления токов проводимости.

Нормирование электромагнитных полей

В настоящее время в качестве определяющего параметра при оценке влияния поля как электрического, так и магнитного частотой до 10 – 30 кГц принято использовать плотность индуктированного в организме электрического тока. Считается, что плотность тока проводимости j< 0,1 мкА/см2, индуктированного внешним полем, не влияет на работу мозга, так как импульсные биотоки, протекающие в мозгу, имеют большие значения.

В таблице 5.2.4 представлены возможные эффекты в зависимости от плотности тока, наведенного переменным полем в теле человека.

Плотность индуктированного тока j, мкА/см2 Наблюдаемые эффекты
0.1 Нет
1,0 Мелькание световых кругов в глазах, аналогичное при надавливании на глазное яблоко
10 – 50   Острые невралгические симптомы, подобные тем, что вызываются электрическим током, т.е. проявляется стимуляция сенсорных рецепторов и мышечных клеток
более 100 Возрастает вероятность фибрилляции желудочка сердца, остановка сердечной деятельности, длительный спазм дыхательных мышц, серьезные ожоги

 

Оценку опасности для здоровья человека выводят из связи между значением плотности тока, наведенного в тканях, и характеристиками ЭМП.

Плотность тока, индуктированного магнитным полем, определяется из выражения

Для удельной проводимости мозга принимают γ = 0,2 См/м, для сердечной мышцы γ = 0,25 См/м. Если принять радиус R = 7,5 см для головы и 6 см для сердца, произведение γ*R получается одинаковым в обоих случаях. При таком подходе безопасная для здоровья магнитная индукция получается равной около 0,4 мТл при 50 или 60 Гц, что эквивалентно напряженности магнитного поля Н <= 300 А/м.

Плотность тока, индуцированного в теле человека электрическим полем, оценивают по формуле j = k*F*Е, с различными коэффициентами k для области мозга и сердца. Для ориентировочных расчетов, поскольку важно оценить порядок плотности тока j, принято k =3.10-3 См/Гц м.

В области частот от 30 до 100 кГц механизм воздействия полей через возбуждение нервных и мышечных клеток уступает место тепловому воздействию и в качестве определяющего фактора принимается удельная мощность поглощения.

При этом считается в соответствии с различными международными предписаниями, что для энергии, поглощенной телом человека, достаточно безопасным пределом является 0,4 Вт/кг (в стандарте ФРГ – VDE 0848, часть 2).

В диапазоне частот от 100 МГц до 3 ГГц следует учитывать резонансные эффекты в теле и в области головы, на что при нормировании должна быть сделана поправка.

Для предупреждения заболеваний, связанных с воздействием радиочастот, установлены предельно допустимые значения напряженности и плотности потока энергии (ППЭ) на рабочем месте персонала и для населения.

Согласно ГОСТ 12.1.006.–84 напряженность ЭМП в диапазоне частот 60 кГц -300 МГц на рабочих местах персонала в течение рабочего дня не должна превышать установленных предельно допустимых уровней (ПДУ):

по электрической составляющей, В/м:

50 – для частот от 60 кГц до 3 МГц;

20 – для частот свыше 3 МГц до 30 МГц;

10 – для частот свыше 30 МГц до 50 МГц;

5 – для частот свыше 50МГц и до 300 МГц;

по магнитной составляющей, А/м:

5 – для частот от 60 кГц до 1,5 МГц;

0,3 – для частот от 30 МГц до 50 МГц.

Предельно допустимую плотность потока энергии в диапазоне частот 300 МГц – 300 ГГц на рабочих местах персонала устанавливают исходя из допустимого значения энергетической нагрузки W на организм и времени пребывания в зоне облучения, однако во всех случаях она не должна превышать 10 Вт/м2, а при наличии рентгеновского излучения или высокой температуры воздуха в рабочих помещениях (выше 28 ° С) – 1 Вт/м2.

Предельно допустимая плотность потока энергии (в принципе, это плотность мощности, судя по размерности Вт/м2, но в технической литературе и нормативной документации, к сожалению, принят термин "плотности потока энергии") определяется по формуле

Нормирование ЭМП промышленной частоты осуществляют по предельно допустимым уровням напряженности электрического (10) и магнитного полей (9) частотой 50 Гц в зависимости от времени пребывания в нем и регламентируются “Санитарными нормами и правилами выполнения работ в условиях воздействия электрических полей промышленной частоты” № 5802–91 и ГОСТ 12.1.002–84.

Влияние электрических полей переменного тока промышленной частоты в условиях населенных мест (внутри жилых зданий, на территории жилой застройки и на участках пересечения воздушных линий с автомобильными дорогами) ограничивается “Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты” № 2971–84.

Нормирование уровней напряженности ЭСП осуществляют в соответствии с ГОСТ 12.1.045–84 в зависимости от времени пребывания персонала на рабочих местах.

Нормирование ЭМИ радиочастотного диапазона проводится по ГОСТ 12.1.006–84 и Санитарным правилам и норам СанПиН 2.2.4/2.1.8.055–96. В основу гигиенического нормирования положен принцип действующей дозы, учитывающей энергетическую нагрузку.

Ионизирующие излучения (ИИ)

Ионизирующими называются излучения, которые способны прямо или косвенно ионизировать среду, т.е. создавать в ней заряженные атомы и молекулы – ионы. Такими свойствами обладают альфа– и бета – частицы, потоки нейтронов, имеющие корпускулярную природу, а также гамма– и рентгеновские электромагнитные излучения.

Естественными источниками ионизирующих излучений являются высокоэнергетические космические частицы, которые, растрачивая свою энергию в атмосфере Земли, порождают ионизирующие радиоактивные изотопы и большое количество вторичных ионизирующих излучений (гамма – кванты, бета – частицы, мезоны).

Кроме того, в земной коре рассеяны долгоживущие радиоизотопы калий–40, уран–238, уран–235, торий–232 и др., являющиеся источниками альфа– и бета–частиц, гамма–квантов и др.

Распад урана и тория сопровождается образованием радиоактивного газа радона, который из горных пород постоянно поступает в атмосферу и гидросферу и присутствует в небольших концентрациях повсеместно.

Искусственными источниками, вносящими наибольший вклад в формирование фонового ионизирующего излучения, являются радиоактивные выпадения от ядерных взрывов, выбросы атомных электростанций (АЭС), заводов по переработке ядерного топлива, выбросы тепловыми электростанциями золы, содержащей естественные радиоактивные торий и радий.

Кроме того, быстрое развитие науки и техники привело к широкому использованию в различных сферах деятельности других источников ионизирующих излучений:

мощные облучатели;·

аппараты для лучевой· терапии;

радиационные дефектоскопы;·

радиоизотопные· термоэлектрические генераторы;

толщиномеры;·

плотномеры, влагомеры,· высотомеры;

измерители и сигнализаторы· уровня жидкости;

нейтрализаторы· статического электричества;

электрокардиостимуляторы;· пожарные извещатели и др.

Определенному облучению люди подвергаются также при медицинских процедурах, изотопной и рентгеновской диагностике и радиационной терапии, при просмотре телепередач и работе на дисплеях.

Успешно работающие в ряде стран атомные электростанции являются источниками незначительного загрязнения внешней среды вблизи АЭС. Однако они могут стать причиной глобального загрязнения целым рядом как коротко–, так и долгоживущих радионуклидов, что и произошло на Чернобыльской АЭС в 1986 г.

Ядерные ионизирующие излучения возникают при превращениях атомных ядер.

Альфа – частицы представляют собой поток ядер атомов гелия, возникающей при радиоактивном распаде ядер (например, плутония–239) или при ядерных реакциях. Энергия потока альфа–частиц лежит в пределах от 4 до 10 МэВ (в реакторах до сотен МэВ).

Опасными участками облучения альфа – частицами являются долго незаживающие ожоги на коже после контакта с их; мощными источниками. Особенно опасно попадание альфа – частиц внутрь организма.

Бета – излучения (поток электронов или позитронов) возникают также при радиоактивном распаде ядер (цезий–137, стронций–90 и др.). Скорость распространения бета–частиц близка к скорости света, а их энергия достигает 3,5 МэВ.

Бета – частицы представляют опасность для глаз, вызывая катаракту.

Нейтронное излучение (поток нейтронов) возникает при ядерных реакциях и работе ускоряющих и энергетических ядерных установок. Энергия нейтронов достигает 20 и более МэВ.

Нейтроны обладают большой проникающей способностью и в меньшей степени ионизирующей способностью.

Гамма – излучение представляет собой высокочастотное электромагнитное излучение (1020–1022 Гц), возникающее в результате разряда (переход атомов из одного энергетического состояния в другое) возбужденных состоянии ядер атома в процессе ядерных реакций или радиоактивного распада некоторых нуклидов (цезий – 137).

Максимальная энергия гамма–лучей достигает 3 МэВ. Они характеризуются малым ионизирующим действием и большой проникающей способностью, чем особенно опасны, так как приводят к глубинному поражению внутренних органов.

Рентгеновское излучение – это электромагнитное излучение частотой 1017 − 1019 Гц, возникающее в результате электронной бомбардировки анода (характеристическое излучение) и резкого торможения электронов в веществе (тормозное излучение).

Рентгеновские лучи обладают малым ионизирующим действием (несколько пар ионов на 1 см пути воздуха) и большой глубиной проникновения, чем также, как и гамма–лучи, опасны для внутренних органов.

Воздействие ИИ на организм человека

Степень воздействия ионизирующих излучении (5) на организм человека зависит от:

дозы излучения и ее· мощности;

плотности ионизации· излучения;

вида облучения и· продолжительности воздействия;

индивидуальной· чувствительности, физиологического состояния организма и др.

Под влиянием ИИ в живой ткани, как и в любой среде, поглощается энергия и возникают возбуждение и ионизация атомов облучаемого вещества.

В результате возникают первичные физико – химические процессы в молекулах живых клеток и окружающего их субстрата и, как следствие, нарушение функций целого организма.

Наиболее чувствительными к действию радиации клетки постоянно обновляющихся тканей и органов (костный мозг, половые железы, селезенка и др.).

Эти изменения на клеточном уровне и гибель клеток могут приводить к нарушению функций отдельных органов и систем, межорганных связей, нарушению нормальной жизнедеятельности организма и к его гибели.

Облучение организма может быть внешним, когда источник излучения находится вне организма, и внутренним – при попадании радиоактивного вещества (радионуклидов) внутрь организма через пищеварительный тракт, органы дыхания и через кожу.

При внешнем облучении наиболее опасными являются гамма–, нейтронное и рентгеновское излучение. Альфа – и бета – частицы из − за их незначительной проникающей способности вызывают в основном кожные поражения.

Внутреннее облучение опасно тем, что оно вызывает на различных органах долго незаживающие язвы. Облучение людей ионизирующими излучениями может привести к соматическим, соматостохастическим и генетическим последствиям.

Острая лучевая болезнь характеризуется цикличностью протекания со следующими периодами: период первичной реакции; скрытый период; период формирования болезни; восстановительный период; период отдаленных последствий и исходов заболевания.

Хроническая лучевая болезнь формируется постепенно при длительном и систематическом облучении дозами, превышающими допустимые при внешнем и внутреннем облучении. Хроническая болезнь может быть легкой (I степень), средней (II степень) и тяжелой (III степень).

Отдаленные последствия лучевой болезни проявляются в повышенной предрасположенности организма к злокачественным опухолям и болезням кроветворной системы.

Основные дозиметрические величины

Активность – число самопроизвольных ядерных превращений в указанном веществе (dN) за малый промежуток времени (dt), деленное на этот интервал времени

Экспозиционная доза – отношение суммарного заряда всех ионов одного знака (dQ), созданных в воздухе в элементе объема V массой dm, к массе воздуха в этом объеме.

Поглощенная доза – средняя энергия dE, переданная веществу излучением в некотором элементе объема массой dm к массе вещества в этом объеме.

Единица измерения − Грей (Гр).

Внесистемная единица – рад (радиационная адсорбированная доза).

1 Гр = 100 рад.

Различные излучения по-разному действуют на организм. Для оценки их количественного действия используют коэффициент качества излучения (КК).

Коэффициент качества излучения – отношение поглощенной дозы образцового излучения, вызывающей определенный эффект (Дпогл.обр), к поглощенной дозе данного излучения (Дпогл), вызывающей такой же эффект.

Образцовое излучение – рентгеновское излучение энергией 250 кэВ.

Коэффициент качества гамма – излучения, бета – излучения, рентгеновского излучения – 1. Для нейтронного излучения – 10. Альфа – излучение – 20.

Эквивалентная доза – произведение поглощенной дозы и коэффициента качества излучения.

Единица измерения – зиверт (Зв).

Внесистемная единица – бэр (биологический эквивалент рада).

Соотношения между единицами

Чувствительность различных органов к ионизирующим излучениям неодинакова. При одинаковой эквивалентной дозе больше вероятность возникновения рака легких, чем рака щитовидной железы. Данный показатель учитывается коэффициентом радиационного риска (КРР).

Его величина такова: для красного костного мозга – 0,12; костной ткани и щитовидной железы – 0,03; половые железы – 0,25; организм в целом – 1.

КРР учитывается при расчете эффективной эквивалентной дозы (ЭЭД), которая учитывает суммарный эффект облучения всего организма. Эта величина, используется как мера риска возникновения отдельных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности.

Коллективная эквивалентная доза − эффективная эквивалентная доза для группы людей.

Единица измерения – человеко− Зиверт (чел – Зв)

В настоящее время ЭЭД уменьшается, а КЭЭД возрастает, что обусловлено миграцией нуклидов, влияющей на генофонд.

Мощность дозы

Мощность может быть рассчитана для различных доз. Соответственно, единица измерения Гр/ч, Зв/год.

Гигиеническая регламентация ИИ

Гигиеническая регламентация ИИ осуществляется Нормами радиационной безопасности НРБ – 99 (Санитарными правилами СП 2.6.1.758 – 99).

Основные дозовые пределы облучения и допустимые уровни устанавливают для следующих категорий облучаемых лиц:

персонал – лица,· работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

все население, включая лиц· из персонала, вне сферы и условий в их производственной деятельности.

Для категорий облучаемых лиц установлены три класса нормативов:

основные пределы (таблица· 5.2.2);

допустимые уровни,· соответствующие основным пределам доз;

контрольные· уровни.

Для персонала она не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, а для населения за период жизни (70 лет) – 70 мЗв.

Кроме того, задаются допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты.

Основные пределы доз (извлечение из НРБ − 99)

Нормируемые величины* Пределы доз, мЗв
персонал (группа А)** население
Эффективная доза 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год
Эффективная доза за год в хрусталике глаза***    
коже****    
кистях и стопах    

Примечания. * Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А.

*** Относится к дозе на глубине 300 мг/см2.

**** Относится к среднему по площади в 1 см2 значению в базальтовом слое кожи толщиной 5 мг/см2 под покровным слое толщиной 5 мг/см2. На ладонях толщина покровного слоя 40 мг/см2. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см2 площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает не превышение предела дозы на хрусталик от бета – частиц.

<== предыдущая лекция | следующая лекция ==>
Вибрация и акустические колебания | Электрический ток
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 2443; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.085 сек.