КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы преобразования проекций
9.1 Замена плоскостей проекций Суть метода заключается в том, что одна из плоскостей проекций заменяется на новую плоскость проекций, при этом последнюю проводят перпендикулярно к незаменяемой плоскости. При такой замене величина координаты любой точки на вводимой плоскости будет такой же, как координаты той же точки на заменяемой плоскости. При этом положение объекта в пространстве остается неизменным. Например, если заменить фронтальную плоскость проекций П2на новую плоскость П4(рисунок 9.1, а), то последняя должна быть перпендикулярна к плоскости П1 а расстояние от проекции точки a4 до оси x1 будет равно расстоянию от проекции точки А2 до оси х. Новая ось проекции х1 проводится так, как этого требует решение задачи. В рассматриваемом случае она проведена произвольно. При замене горизонтальной плоскости П 1 на новую плоскость П5(рисунок 9.1, б) сохраняется неизменная координата у; Рисунок 9.1 При решении конкретной задачи таких замен может быть выполнено последовательно несколько. Главные условия этих действий — сохранение ортогонального проецирования в новой системе проекций и величин соответствующих координат. Пусть дана прямая общего положения АВ (рисунок 9.2). Необходимо преобразовать чертеж отрезка АВ таким образом, чтобы прямая стала проецирующей, т.е спроецировалась на одну из плоскостей проекции в точку. Такое преобразование с заменой плоскостей выполняется в два этапа.
Рисунок 9.2 На первом этапе новую плоскость, например П4, вводят взамен фронтальной плоскости П2, параллельно прямой АВ. Новую ось проекций x1 проводят параллельно горизонтальной проекции прямой A1B1. Далее проводят от горизонтальной проекции линии связи, перпендикулярные к новой оси проекций, и на них откладывают координаты, т.е. расстояние от сторон оси проекций до фронтальных проекций точек. Новая проекция А4В4будет определять натуральную длину отрезка АВ. Одновременно определяется угол наклона прямой к плоскости проекций, в рассматриваемом примере к горизонтальной плоскости П1 – угол . При замене горизонтальной плоскости проекции П1 на новую угол наклона прямой АВ к плоскости П2 - . На втором этапе в системе плоскостей П1/П4плоскость проекций П1заменяют на П5. При этом ось х2 проводят перпендикулярно к проекции А4В4. В новой системе плоскостей проекций П4/П5прямая заняла проецирующее положение, т.е. она стала перпендикулярна к плоскости П5, и на эту плоскость проекция прямой будет точкой, а концы отрезка АВсовпали на проекции А5В5. Метод применяется для определения расстояния между параллельными и скрещивающимися прямыми, величины двугранного угла, натуральной величины плоской фигуры и различных ее параметров. В том случае, если прямые являются прямыми уровня, т.е. параллельны одной из плоскостей проекций, первый этап решения опускается и преобразование начинается со второго этапа. 9.2 Вращение вокруг проецирующей оси Этот метод заключается в том, что любая точка вращается вокруг какой-либо оси, перпендикулярной к одной из плоскостей проекции. При этом точка в пространстве движется по траектории окружности, которая лежит в плоскости, перпендикулярной к оси вращения. Система плоскостей проекций остается неизменной.
Рисунок 9.3 Рисунок 9.4 Например, при вращении точки А вокруг оси i (рисунок 9.3), перпендикулярной к П2, она движется по траектории, которая проецируется на плоскость П1 в виде окружности (точки А1 A1', a1, a1'" и т.д.), а на плоскость П2 - в виде следа горизонтальной плоскости уровня. Все фронтальные проекции точки А (А2, А2', А2" и т.д.) находятся на фронтальном следе горизонтальной плоскости. Точка i1 представляет собой горизонтальную проекцию оси i, а прямая i2 — ее фронтальную проекцию. Если вращать точку А вокруг оси i, перпендикулярной к фронтальной плоскости проекций П2 (рисунок 9.4), то фронтальные проекции А2, А2', А2" и т.д. точки А будут лежать на окружности, плоскость которой перпендикулярна к оси i и горизонтальной плоскости проекции. При этом горизонтальные проекции А2 А2', А2" и т.д. точки А будут расположены на горизонтальном следе этой плоскости. 9.3 Метод плоскопараллельного перемещения Применение метода вращения вокруг проецирующей оси при преобразовании нередко приводит к наложению на исходную новых проекций. При этом чтение чертежа представляет определенные сложности. Избавиться от указанного недостатка позволяет метод плоскопараллельного перемещения проекций фигуры. Суть метода заключается в том, что все точки фигуры перемещаются в пространстве параллельно некоторой плоскости (например, параллельно какой-либо плоскости проекций). Это означает, что каждая точка фигуры перемещается в соответствующей плоскости уровня. Например, прямая общего положения АВ, заданная своими проекциями A1B1 и А2В2(рисунок 9.5), перемещается таким образом, чтобы горизонтальная проекция АВстала параллельной оси х. При этом точки А2 и В2 фронтальной проекции прямой АВ перемещаются в горизонтальных плоскостях уровня и (на фронтальной проекции 2 и 2 параллельны оси х и займут новое положение А2 и В2. При перемещении длина горизонтальной проекции A1B1 отрезка АВ остается постоянной, а величина фронтальной проекции А2 В2 будет натуральной величиной отрезка, при этом угол а - угол наклона прямой АВ к горизонтальной плоскости проекции П1. При перемещении прямой АВ во фронтальной плоскости уровня можно достичь положения прямой, перпендикулярной к плоскости П1. Рисунок 9.5 Этот метод применяется для определения натуральной величины отрезка, его угла наклона к плоскостям проекций, расстояния между параллельными прямыми и натуральной величины плоской фигуры. 9.4 Метод вращения вокруг линии уровня Суть метода заключается в том, что осью вращения выбирается одна из линий уровня - горизонталь или фронталь плоскости или плоской фигуры. Таким образом, плоскость как бы поворачивается вокруг некоторой оси, принадлежащей этой плоскости, до положения, при которой эта плоскость становится параллельной одной из плоскостей проекций. Например, повернем плоский угол, образованный пересекающимися прямыми а и b (рисунок 9.6). Для решения поставленной задачи проводят в плоскости угла горизонталь h и используют ее как ось вращения, вокруг которой будут вращаться прямые а и b и вершина К. Все точки вращаются в плоскостях, перпендикулярных к горизонтали, при этом точки 1 и 2 остаются неподвижными, а точка К вращается вокруг горизонтали. Из горизонтальной проекции К1 точки К проводят линию, перпендикулярную к оси вращения h1. Отрезок K1O1- горизонтальная проекция радиуса вращения точки К. Натуральную величину этого радиуса находят методом построения прямоугольного треугольника.
Рисунок 9.6 На продолжении прямой O1K1откладывают гипотенузу O1K0и получают совмещенное положение К0. Соединив точки 11 и 21 с точкой К0, получают натуральную величину угла при вершине К. Этим способом находится натуральная величина любой плоской фигуры, плоского угла. 9.5 Метод совмещения плоскостей Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересечения плоскости, в которой лежит та или иная фигура, с одной из плоскостей проекций. Иначе говоря, осью вращения служит горизонтальный или фронтальный след плоскости. При этом каждая точка, принадлежащая рассматриваемой фигуре, при вращении перемещается в плоскости, перпендикулярной к следу той плоскости, в которой она лежит. Например, плоскость , заданную своими следами и , необходимо совместить с горизонтальной плоскостью проекций П1 (рисунок 9.7).
Рисунок 9.7 Для решения поставленной задачи берут на фронтальном следе плоскости произвольную точку 12 и находят ее горизонтальную проекцию 1, которая лежит на оси х. Далее из точки 11проводят луч, перпендикулярный к горизонтальному следу плоскости (любая точка при вращении должна перемещаться в плоскости, перпендикулярной к оси поворота). На нем находят совмещенное положение точки 1 — точку 10, как точку пересечения луча с дугой окружности радиусом . Точка 10 принадлежит одновременно и плоскости П1 и новому (совмещенному) положению плоскости . Через точку 10 проводят новый фронтальный след 0 плоскости . Следы 1 и 0 характеризуют новое (совмещенное) положение плоскости . 9.6 Вопросы для самопроверки 1 В чем состоит сущность преобразования ортогональных проекций способом замены плоскостей проекций? 2 Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы перевести отрезок прямой общего положения в отрезок прямой частного положения? 3 Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы определить натуральную величину плоской фигуры? 4 В чем заключается способ вращения вокруг проецирующей оси? 5 В каких плоскостях перемещается точка, вращаемая вокруг оси, перпендикулярной к плоскостям П1 и П2? 6 Сущность способа плоскопараллельного перемещения. 7 Что представляет собой преобразование чертежа способом вращения вокруг линии уровня? 8 В чем заключается преобразование чертежа способом совмещения? 9.7 Примеры решения задач Ниже приведены решения одной и той же задачи вышеописанными методами. 9.7.1Задание:определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1B1C1и А2В2С2(рисунок 9.8), а также угол наклона плоскости треугольника к П1. Рисунок 9.8
Рисунок 9.9
1) Решение методом замены плоскостей проекций (рисунок 9.9). Плоскость треугольника проецируется в натуральную величину в том случае, если она будет в пространстве параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций. Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1 новой системы плоскостей проекций П1 / П4перпендикулярно к горизонтальной проекции горизонтали h1. В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4. На линиях проекционной связи в новой системе откладывают координаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П1/П2. При соединении новых проекций А4, B 4, С4 получают прямую линию, в которую спроецировалась плоскость треугольника ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 - угол . На чертеже это угол между осью x1 и проекцией С4А4В 4. Второй этап. Выбираем новую плоскость проекции П5, параллельную плоскости треугольника, т.е. новую ось x2 проводят параллельно С4А4В4на произвольном расстоянии. Получают новую систему П4/П5.Полученный треугольник А5В5С5и есть искомая натуральная величина треугольника ABC. 2) Решение методом вращения вокруг проецирующей оси (рисунок 9.10).
Рисунок 9.10
Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABC преобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого на фронтальной проекции чертежа проводят горизонталь h2 через точку А2. Затем строят горизонтальную проекцию h1 горизонтали h через точки A1 и 11 Через точку 1 проводят ось i - ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят горизонтальные плоскости уровня 2 и 2. Вершина С принадлежит плоскости П1 поэтому ее плоскостью вращения будет плоскость проекций П1. На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h'1 займет новое положение - перпендикулярно к оси х. При этом на фронтальной проекции точка А2 перемещается по следу плоскости 2 до пересечения с линией связи, проведенной через точку a'1. На горизонтальной проекции поворачиваем оставшиеся вершины В и С вокруг оси так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С - по оси х. Соединив новое положение всех вершин треугольника ABC, получают проекцию А'2В'2С'2,сливающуюся в линию. Этим достигают проецирующего положения треугольника ABC. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 - . На втором этапе проводят ось i` через вершину С так, чтобы ось была фронтально проецирующая. При этом С'2 = /'2, а горизонтальная проекция i'1 пройдет через проекцию С'1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А'2 и В'1, вокруг i`2 = С'2 до совмещения с осью х, при этом горизонтальные проекции B'1 и A'1 будут перемещаться в горизонтально проецирующихся плоскостях уровня и P1 и займут новое положение В"1, и А"1 вершина С останется на месте. Соединив новые точки между собой, получают треугольник ABC в натуральную величину. 3 Решение методом плоскопараллельного перемещения Задача решается в два этапа (рисунок 9.11).. На первом этапе преобразовывают чертеж так, чтобы плоскость треугольника ABC стала перпендикулярна к одной из плоскостей проекций, т.е. должна в себе содержать прямую, перпендикулярную к этой плоскости. Для этого проводят в плоскости треугольника горизонталь h (фронтальная проекция А212 // х, а горизонтальная — A111). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проекций П1, А принадлежит плоскости , а В — плоскости А. Рисунок 9.11
Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2. Для этого на произвольном расстоянии от оси х вычерчивают горизонтальную проекцию треугольника A1B1C1 с условием, что П2, а значит х. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение - А'2В'2С'2. Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2. На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А'2В'2С'2 располагают на произвольном расстоянии от оси х параллельно плоскости П1. При этом вершины А, В и С треугольника заключают в горизонтально проецирующие плоскости , Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А'1 В'1 С'1. От нового положения фронтальной проекции А"2В"2С"2 проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (,T1,P1), и получают точки А"1 В"1 C"1. Соединив эти точки между собой, получают треугольник ABC в натуральную величину. 4 Решение методом вращения вокруг линии уровня (рисунок 9.12). Рисунок 9.12 Для решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, в положение, параллельное горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1 горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Для определения радиуса вращения точки С на горизонтальной проекции проводят перпендикуляр C1O1 A111 точка О1, является центром вращения точки С. Для определения натуральной величины радиуса вращения строят прямоугольный треугольник, в котором O1C1 - один из катетов. Второй катет - разность координат отрезка О2С2, взятого с фронтальной проекции. В построенном треугольнике гипотенуза O1C0 - натуральная величина радиуса вращения. На продолжении перпендикуляра O1C1 откладывают |RBp.| и получают новое положение вершины С после вращения — С0. Вторая вершина В0 получается пересечением луча C011 и перпендикуляра к горизонтальной проекции h1 проведенного через точку b1. Треугольник A1B0C0 есть искомая натуральная величина треугольника ABC. 5) Решение методом совмещения (рисунок 9.13).
Рисунок 9.13 Для решения задачи методом совмещения необходимо построить следы плоскости , которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проекций П1. Тогда горизонтальный след плоскости проводят через точки n1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов . Учитывая свойство, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след 2 плоскости проводят через точку параллельно фронтали . Для нахождения натуральной величины треугольника ABC необходимо построить совмещенное положение плоскости с горизонтальной плоскостью проекций П1. Для этого через вершину А проводят горизонталь h1. На фронтальном следе 2 фиксируют точку 22. Ее горизонтальная проекция - точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости . Поэтому, чтобы построить точку 2 в совмещенном положении 20, проводят из 21 перпендикуляр к горизонтальному следу , а из центра дугу окружности радиусом до пересечения с направлением перпендикуляра. Соединив с 20, получают совмещенное положение фронтального следа - Далее через точку 2о проводят горизонталь ha в совмещенном положении. На этой горизонтали находят точку А0, проведя перпендикуляр из точки a1 к горизонтальному следу .По такой же схеме строят совмещенное положение точки В0. Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. . Соединив построенные точки, получают треугольник А0В0С0 - это и есть натуральная величина треугольника ABC.
Дата добавления: 2014-01-06; Просмотров: 5450; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |