КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Не распознаваемость самоприменимости машины Тьюринга
Приведем доказательство о не распознаваемости самоприменимости машины Тьюринга. Для этого нам понадобятся следующие теоремы и определения. Теорема 3.2.1. (о композиции машин Тьюринга). Каковы бы ни были машины Тьюринга Т1 и Т2 в алфавите А, можно построить работающую в том же алфавите такую машину Т, что для всех слов a над алфавитом А будет выполнено равенство Т(a)=Т2(Т1(a)). Доказательство этой теоремы осуществляется просто. Внутренние состояния машин Т1 и Т2 (включая начальные состояния) переименовываются, причем в функциональной схеме машины Т1 переход в заключительное состояние заменяется переходом в начальное состояние машины Т2. При этом функциональные схемы объединяются в одну. Теорема 3.2.2. (о двоичном моделировании машины Тьюринга) Какова бы ни была машина Т1 в алфавите А, может быть построена такая машина Т в алфавите В={a0, 0, 1}, что для любых слов a1, a2 над алфавитом А и их кодов b1, b2 над алфавитом В Т(b1)= Т(b2) тогда и только тогда, когда Т1(a1)= a2. Из этой теоремы следует, что в теории машин Тьюринга вполне можно рассматривать только те машины, которые работают в двоичном алфавите. Более того, кроме двух способов задания машины Тьюринга (в виде функциональной схемы и списка команд) возможен третий способ ее записи – в виде двоичного слова. При этом с помощью побуквенного обратимого (конструктивного) двоичного кодирования кодируются в общем случае: – символы внешнего алфавита и алфавита внутренних состояний, – символы, используемые при записи команд машины Тьюринга (Л, П, →,«оставаться на месте»), – символ, фиксирующий начало и конец программы, – символ, служащий разделителем между командами. Подчеркнем, что сама двоичная кодировка указанных символов может осуществляться разными способами (один из способов можно найти в []). Важно лишь то, что кодирование обязательно должно быть обратимым. В этом случае двоичная запись машины Тьюринга (Т), которую далее будем обозначать, следуя [] Т ( условная запись двоичного кода символа, фиксирующего начало и конец программы), будет однозначно задавать функциональную схему машины Т.
Рассматривая далее множество машин Тьюринга {T} будем считать, что каждая из них задана своей двоичной записью Т. Широко известная в теории алгоритмов массовая проблема остановки в этих терминах формулируется следующим образом. Применима ли машина Тьюринга Т, заданная своей записью Т, к двоичному слову p или нет? Еще одна известная массовая проблема теории алгоритмов – проблема самоприменимости – звучит так. Применима ли машина Тьюринга Т, заданная своей записью Т, к своей записи Т или нет? Очевидно, что проблема самоприменимости является частным случаем проблемы остановки. И если проблема самоприменимости алгоритмически неразрешима, то и проблема остановки относится к числу алгоритмически неразрешимых проблем. Тот факт, что проблема самоприменимости алгоритмически неразрешима, фиксирует следующая теорема. Теорема 3.2.3. (о нераспознаваемости самоприменимости). Не существует машины Тьюринга S, которая по записи Т определяла бы, самоприменима машина Т или нет. Доказательство. Предположим противное и допустим, что существует машина Тьюринга S, распознающая самоприменимость. Без ограничения общности можно считать, что S(C)=1, а S(Н)=0, где C – произвольная самоприменимая машина Тьюринга, а Н – произвольная несамоприменимая машина Тьюринга. Введем в рассмотрение машину Т1 с алфавитом внутренних состояний Q ={q0, q1, q2 }, работающую в алфавите A ={a0, 0, 1} в соответствие со следующей функциональной схемой.
Как видно из приведенной схемы, если первая буква исходного слова a есть 0, то Т1(a)=a. Если же исходное слово a пусто или начинается с 1, то Т1 неприменима к слову a, Т1(a)=1111… Определим теперь новую машину Тьюринга S1 как композицию машины S и машины Т1, полагая S1(a)=Т1(S(a)). Предположим далее, что машина S1 самоприменима. Это означает, что S1 – запись самоприменимой машины и по определению машины S S(S1)=1. В то же время, S1(S1)=Т1(S(S1))=Т1(1)=111…., что означает несамоприменимость машины S1. Противоречие налицо. Предположение о том, что машина S1 несамоприменима, влечет за собой (по определению машины S) соотношение S(S1)=0. Но по определению машины S1 S1(S1)=Т1(S(S1))=Т1(0)=0, что означает самоприменимость машины S1. Вновь получаем противоречие. Иными словами, предположение о существовании машины S, распознающей самоприменимость приводит к противоречию. ¨Теорема доказана. Следствие. Проблема остановки алгоритмически неразрешима. Проблема самоприменимости в теории алгоритмов явилась первой алгоритмически неразрешимой проблемой, от которой отталкивались в дальнейших исследованиях.
Дата добавления: 2014-01-06; Просмотров: 561; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |