КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Место нейронных сетей среди других методов решения задач
Производительность мозга превышает производительность обычной ЭВМ на величину от 100 тыс. до 1 млн. раз. Во многом этот выигрыш обусловлен параллельностью обработки информации в мозге. Следовательно, для повышения производительности ЭВМ необходимо перейти от принципов фон Неймана к параллельной обработке информации. Тем не менее, параллельные компьютеры пока не получили распространения по нескольким причинам: 1. Большое количество соединений. Каждый процессор в параллельной системе связан с большим количеством других. Количество связей занимает намного больший объем, чем сами процессоры. Такая плотность связей не реализуется в обычных интегральных схемах. 2. Трехмерность структуры связей между процессорами. Существуют различные типы связности процессоров в параллельной системе. Обычно требуются трехмерные связи. Технологически такие связи тоже пока невыполнимы. 3. Сложность программирования. Пока не создано единых способов программирования параллельных ЭВМ и средств для написания программ. Несмотря на перспективность параллельных ЭВМ и, в частности, нейронных сетей, для их создания нет элементной базы. Поэтому, вместо моделирования НС на параллельных машинах, большая часть исследований проводится двумя способами: 1) моделирование НС на обычных последовательных ЭВМ; 2) создание специализированных нейроплат и нейропроцессоров для ускорения работы ЭВМ с нейронными сетями. Первый способ дает проигрыш в быстродействии даже по сравнению с обычной ЭВМ, а второй способ не позволяет переходить от одной модели нейросети к другой, т.к. модель определяется используемой нейроплатой или нейропроцессором, и требуется сменить нейропроцессор, чтобы сменить модель. Попытки использовать оптические, химические, биологические и другие технологии для создания НС, несмотря на перспективность, пока не имеют практического применения. Нейронные сети превосходят последовательные машины в решении тех же задач, в которых машину превосходит человек. Задачи, требующие большого объема вычислений или высокой точности лучше выполняются обычной ЭВМ. К задачам, успешно решаемым НС на данном этапе их развития относятся: — распознавание зрительных, слуховых образов; огромная область применения: от распознавания текста и целей на экране радара до систем голосового управления; — ассоциативный поиск информации и создание ассоциативных моделей; синтез речи; формирование естественного языка; — формирование моделей и различных нелинейных и трудно описываемых математически систем, прогнозирование развития этих систем во времени: применение на производстве; прогнозирование развития циклонов и других природных процессов, прогнозирование изменений курсов валют и других финансовых процессов; — системы управления и регулирования с предсказанием; управление роботами, другими сложными устройствами; — разнообразные конечные автоматы: системы массового обслуживания и коммутации, телекоммуникационные системы; — принятие решений и диагностика, исключающие логический вывод; особенно в областях, где отсутствуют четкие математические модели: в медицине, криминалистике, финансовой сфере; Нейросети обладают свойством универсальности. Хотя почти для всех перечисленных задач существуют эффективные математические методы решения и несмотря на то, что НС проигрывают специализированным методам для конкретных задач, благодаря универсальности и перспективности для решения глобальных задач, например, построения ИИ и моделирования процесса мышления, они являются важным направлением исследования, требующим тщательного изучения.
Дата добавления: 2014-01-06; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |