КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кортеж. График
Кортеж - фундаментальное неопределяемое понятие. В кортеже существенны не только элементы, но и порядок, в котором они располагаются. Следовательно, кортеж может содержать одинаковые элементы. Примерами кортежей могут служить очередь, свадебный кортеж. Кортежем является вектор, заданный проекциями на оси. Кортеж заключается в угловые скобки. < a1 ,a2, a3,..., an > - кортеж длиной n или упорядоченная n-ка. < 1, 1, 1 > - упорядоченная тройка – единичный вектор. < a, b> - упорядоченная двойка или пара. Пару (и не только ее) можно представить и в традиционном виде, как множество: {a, {a, b}}. Однако использование угловых скобок упрощает представление.
График - множество пар. Можно дать и более общее определение графика в n-мерном пространстве, как множества n-ок). Однако в дальнейшем будут рассматриваться только двухмерные графики. Примеры: G = { < a, b >, < c, a >, < d, b > } - график. Несколько эпатирующе звучит слово график применительно к аналитической записи. Но это лишь подчеркивает его универсальность. Для множеств действительных чисел Х и У приведем графический пример графика. У уi хi Х
Декартово (прямое) произведение множеств A и B: A x B = {< a, b > | a Î A, bÎB} В общем случае: A1 x A2 x A3 x...x An = {< a1, a2,..., an >|a1ÎA1, a2ÎA2,..., anÎAn} Пример: Для A = { 1, 2} и B={ 1, 2, 3} декартово произведение А х В = {< 1, 1 >, < 1, 2 >, < 1, 3 >, < 2, 1 >, < 2, 2 >, <2, 3>}
График является полым, если он совпадает с декартовым произведением. Композицией графиков P и Q называется график R = P · Q, если он состоит из таких пар <x, y> Î R, что для каждой пары найдется свое z, такое, что < x, z > Î P, < z, y > Î Q. Очевидно, что это некоммутативная операция.
Пример: P = {< a, b >, < 1, r >, < c, 3 >, < a, 4 >} Q = {< 2, 3 >, < 4,5 >, < a, c >, < b, d >}
R = P · Q = {< a, d >, < a, 5 >}
Дата добавления: 2014-01-06; Просмотров: 352; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |