КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Одномерная оптимизация
Все пошаговые методы оптимизации состоят из двух важнейших частей: - выбора направления, - выбора шага в данном направлении (подбор коэффициента обучения). Методы одномерной оптимизации дают эффективный способ для выбора шага. В простейшем случае коэффициент обучения фиксируется на весь период оптимизации. Этот способ практически используется только совместно с методом наискорейшего спуска. Величина подбирается раздельно для каждого слоя сети по формуле где обозначает количество входов -го нейрона в слое. Более эффективный метод основан на адаптивном подборе коэффициента с учетом фактической динамики величины целевой функции. Стратегия изменения значения определяется путем сравнения суммарной погрешности на -й итерации с ее предыдущим значением, причем рассчитывается по формуле Для ускорения процесса обучения следует стремиться к непрерывному увеличению при одновременном контроле прироста погрешности по сравнению с ее значением на предыдущем шаге. Незначительный рост погрешности считается допустимым. Если погрешности на -1-й и -й итерациях обозначить соответственно и , а коэффициенты обучения на этих же итерациях — и , то значение следует рассчитывать по формуле
где - коэффициент допустимого прироста погрешности, - коэффициент уменьшения - коэффициент увеличения . Наиболее эффективный, хотя и наиболее сложный, метод подбора коэффициентов обучения связан с направленной минимизацией целевой функции в выбранном направлении . Необходимо так подобрать значение , чтобы новое решение соответствовало минимуму целевой функции в данном направлении . Поиск минимума основан на полиномиальной аппроксимации целевой функции. Выберем для аппроксимации многочлен второго порядка где , и — коэффициенты, определяемые в цикле оптимизации. Для расчета этих коэффициентов используем три произвольные точки , лежащие в направлении , т.е. Соответствующие этим точкам значения целевой функции обозначим как (5) Коэффициенты , и рассчитываются в соответствии с решением системы уравнений (5). Для определения минимума многочлена его производная приравнивается к нулю, что позволяет получить . После подстановки выражений для в формулу для получаем
Дата добавления: 2014-01-06; Просмотров: 390; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |