КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Обучение сети Хопфилда методом проекций
Лучшие результаты, чем при использовании правила Хебба, можно получить, если для обучения использовать псевдоинверсию. В основе этого подхода лежит предположение, что при правильно подобранных весах каждый поданный на вход сети вектор вызывает генерацию самого себя на выходе сети. В матричной форме это можно представить в виде где - матрица весов сети размерностью , а - прямоугольная матрица размерностью , составленная из обучающих векторов . Решение такой линейной системы уравнений имеет вид где знак + обозначает псевдоинверсию. Если обучающие векторы линейно независимы, последнее выражение можно упростить и представить в виде
Здесь псевдоинверсия заменена обычной инверсией квадратной матрицы размерностью . Выражение (2) можно записать в итерационной форме, не требующей расчета обратной матрицы. В этом случае (2) принимает вид итерационной зависимости от последовательности обучающих векторов , : Каждой промежуточной точке можно сопоставить энергетическую функцию которая убывает при каждом изменении состояния вплоть до достижения локального минимума Рис. 3. Структура сети BAM В режиме распознавания при начальных значениях векторов, совпадающих с использованными при обучении, сеть распознает их безошибочно. При искажении векторов и сеть BAM не всегда способна откорректировать эти векторы и распознает их с определенными погрешностями. Если размерности векторов и обозначить соответственно и , то удовлетворительное качество распознавания можно получить при выполнении зависимости где - число запоминаемых в сети BAM пар векторов.
Дата добавления: 2014-01-06; Просмотров: 405; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |