Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Радиальная нейронная сеть

Использование в разложении базисных функций, где - это количество обучающих выборок, недопустимо также и с практической точки зрения, поскольку обычно количество этих выборок очень велико, и в результате вычислительная сложность обучающего алгоритма становится чрезмерной. Решение системы уравнений (1) размерностью при больших значениях становится затруднительным. Так же, как и для многослойных сетей, необходимо редуцировать количество весов, что в этом случае сводится к уменьшению количества базисных функций. Поэтому отыскивается субоптимальное решение в пространстве меньшей размерности, которое с достаточной точностью аппроксимирует точное решение. Если ограничиться базисными функциями, то аппроксимирующее решение можно представить в виде

(3)

где , а - множество центров, которые необходимо определить. В особом случае, если принять , можно получить точное решение .

Чаще всего в качестве радиальной функции применяется функция Гаусса. При размещении ее центра в точке она может быть определена в сокращенной форме как

(4)

В этом выражении - параметр, от значения которого зависит ширина функции.

Полученное решение, представляющее аппроксимирующую функцию в многомерном пространстве в виде взвешенной суммы локальных базисных радиальных функций (выражение (3)), может быть интерпретировано радиальной нейронной сетью, представленной на рис. 2 (для упрощения эта сеть имеет только один выход), в которой определяется зависимостью (4). Это сеть с двухслойной структурой, в которой только скрытый слой выполняет нелинейное отображение, реализуемое нейронами с базисными радиальными функциями. Выходной нейрон, как правило, линеен, а его роль сводится к взвешенному суммированию сигналов, поступающих от нейронов скрытого слоя. Вес , как и при использовании сигмоидальных функций, представляет поляризацию (порог), вводящую показатель постоянного смещения функции.


Рис. 2. Обобщенная структура радиальной сети

Полученная архитектура радиальных сетей имеет структуру, аналогичную многослойной структуре сигмоидальных сетей с одним скрытым слоем. Роль скрытых нейронов в ней играют базисные радиальные функции, отличающиеся своей формой от сигмоидальных функций. Несмотря на отмеченное сходство, сети этих типов принципиально отличаются друг от друга. Радиальная сеть имеет фиксированную структуру с одним скрытым слоем и линейными выходными нейронами, тогда как сигмоидальная сеть может содержать различное количество слоев, а выходные нейроны бывают как линейными, так и нелинейными. У используемых радиальных функций может быть весьма разнообразная структура. Нелинейная радиальная функция каждого скрытого нейрона имеет свои значения параметров и , тогда как в сигмоидальной сети применяются, как правило, стандартные функции активации с одним и тем же для всех нейронов параметром . Аргументом радиальной функции является эвклидово расстояние образца от центра , а в сигмоидальной сети - это скалярное произведение векторов .

 

<== предыдущая лекция | следующая лекция ==>
Математические основы радиальных сетей | Информационные технологии. Под технологией понимают совокупность методов обработки, изготовления, изменения состояния, свойств
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.