КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Информационные технологии экспертных систем
Экспертные системы основаны на использовании искусственного интеллекта. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникает необходимость. Экспертные системы (ЭС) - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей. Традиционно знания существуют в двух видах - коллективный опыт и личный опыт. Если большая часть знаний в предметной области представлена в виде коллективного опыта (например, высшая математика), эта предметная область не нуждается в экспертных системах. Если в предметной области большая часть знаний является личным опытом специалистов высокого уровня (экспертов), если эти знания по каким-либо причинам слабо структурированы, такая предметная область, скорее всего, нуждается в экспертной системе. При создании баз знаний самая трудная задача - извлечение из них эксперта. Для этого существуют методы извлечения знаний. Экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области в форму эвристических правил. Эвристики не гарантируют получения результата с такой же степенью уверенности, как алгоритмы ППР. Однако они часто дают приемлемые решения для практического использования. Таким образом, экспертные системы используются в качестве советующих систем. Пользователь - специалист предметной области, для которого предназначена система. Обычно его квалификация недостаточно высока, и поэтому он нуждается в помощи и поддержке своей деятельности со стороны ЭС. Специалист по знаниям - специалист по искусственному интеллекту, выступающий в роли промежуточного буфера между экспертом и базой знаний. Синонимы: когнитолог, инженер по знаниям, инженер-интерпретатор, аналитик. Интерфейс пользователя - комплекс программ, реализующих диалог пользователя с ЭС как на стадии ввода информации, так и получения результатов. Специалист использует интерфейс также для ввода команд, содержащих параметры, определяющие процесс обработки информации. Пользователь может использовать четыре метода ввода информации: меню, команды, естественный язык, собственный интерфейс. Технология экспертных систем предусматривает возможность получать в качестве выходной информации не только решения, но и объяснения. База знаний (БЗ) - ядро ЭС, совокупность знаний предметной области, записанная на машинный носитель в форме, понятной эксперту и пользователю (обычно на некотором языке, приближенном к естественному). Параллельно такому "человеческому" представлению существует БЗ во внутреннем "машинном" представлении. Для организации базы знаний используют различные модели представления знаний: продукционную, семантическое сети, фреймы, формальные логические модели. Интерпретатор - часть ЭС, производящая в определенном порядке обработку знаний, находящихся в базе знаний. Как правило, в нем выделяют два блока: решатель и подсистема объяснений. Решатель - программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в БЗ (синонимы: дедуктивная машина, блок логического вывода). Подсистема объяснений - программа, позволяющая пользователю получить ответы на вопросы: "Как была получена та или иная рекомендация?" и "Почему система приняла такое решение?" Ответ на вопрос "как" - это трассировка всего процесса получения решения с указанием использованных фрагментов БЗ, т.е. всех шагов цепи умозаключений. Ответ на вопрос "почему" - ссылка на умозаключение, непосредственно предшествовавшее полученному решению, т.е. отход на один шаг назад. Кроме этого, во многих экспертных системах вводят дополнительные блоки: базы данных, блок расчета, блок ввода и корректировки данных. Модуль создания системы - служит для создания набора (иерархии) правил. Существует два подхода, которые могут быть положены в основу модуля создания системы: использование алгоритмических языков программирования и использование оболочек экспертных систем. Как правило, в модуль создания системы включается интеллектуальный редактор БЗ - программу, предоставляющую инженеру по знаниям возможность создавать БЗ в диалоговом режиме. Включает в себя систему вложенных меню, шаблонов языка представления знаний, подсказок ("help" - режим) и других сервисных средств, облегчающих работу с базой. Класс "экспертные системы" сегодня объединяет несколько тысяч различных программных комплексов, решающих разные типы задач: Задачи интерпретации данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных. Примеры: обнаружение и идентификация различных типов океанских судов; определение основных свойств личности по результатам психодиагностического тестирования и др. Задача диагностики. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы. Пример: диагностика и терапия сужения коронарных сосудов; диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ и др. Задача мониторинга. Основная задача мониторинга - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста. Пример: контроль за работой электростанций, помощь диспетчерам атомного реактора. Задача проектирования. Проектирование состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов - чертеж, пояснительная записка и т.д. Основные проблемы здесь - получение четкого структурного описания знаний об объекте и проблема "следа". Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения. Задача прогнозирования. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров "подгоняются" под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками. Пример: предсказание погоды. Задача планирования. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности. Задачи обучения. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом "ученике" и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний. Информационные технологии ППР и информационные технологии ЭС широко используются для решения задач в слабоформализованных предметных областях, однако между ними существуют существенные различия: 1) решение проблемы в рамках систем ППР открывает уровень понимания возможностей системы пользователем и его возможности получить и осмыслить решение; технология экспертных систем предлагает пользователю принять решение, превосходящее его возможности; 2) экспертные системы способны пояснить свои рассуждения в процессе получения решения (очень часто эти пояснения более важны для пользователя, чем само решение); 3) новый компонент информационных технологий - знания, использующиеся только в экспертных системах; 4) главная ориентация СППР - принятие решений, а ИТЭС - на тиражирование знаний.
Дата добавления: 2014-01-06; Просмотров: 632; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |