КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Архитектура как совместимость с кодом
Рассмотрим более подробно понятие "архитектуры микропроцессора" как совместимости с кодом на примере архитектуры IA86. Наверняка вы часто встречались с термином «x86», или «Intel-совместимый процессор» (или «IBM PC compatible» — но это уже по отношению к компьютеру). Иногда также встречается термин «Pentium-совместимый» (почему именно Pentium — вы поймете сами чуть позже). Что за всеми этими названиями скрывается на самом деле? На данный момент наиболее корректно с точки зрения автора выглядит следующая простая формулировка: современный x86-процессор — это процессор, способный корректно исполнять машинный код архитектуры IA32 (архитектура 32-битных процессоров Intel). В первом приближении это код, исполняемый процессором i80386 (известным в народе как «386-й»), окончательно же основной набор команд IA32 сформировался с выходом процессора Intel Pentium Pro. Что означает «основной набор» и какие есть еще? Для начала ответим на первую часть вопроса. «Основной» в данном случае означает то, что с помощью исключительно этого набора команд, может быть написана любая программа, которая вообще может быть написана для процессора архитектуры x86 (или IA32, если вам так больше нравится). Кроме того, у архитектуры IA32 существуют «официальные» расширения (дополнительные наборы команд) от разработчика самой архитектуры, компании Intel: MMX, SSE, SSE2 и SSE3. Также существуют «неофициальные» (не от Intel) расширенные наборы команд: EMMX, 3DNow! и Extended 3DNow! — их разработала компания AMD. Впрочем, «официальность» и «неофициальность» в данном случае понятие относительное — де-факто все сводится к тому, что некоторые расширения набора команд Intel как разработчик изначального набора признает, а некоторые — нет, разработчики же программного обеспечения используют то, что им лучше всего подходит. В отношении расширенных наборов команд существует одно простое правило хорошего тона: прежде чем их использовать, программа должна проверить, поддерживает ли их процессор. Иногда отступления от этого правила встречаются (и могут приводить к неправильному функционированию программ), но объективно это является проблемой некорректно написанного программного обеспечения, а не процессора. Для чего предназначены дополнительные наборы команд? В первую очередь — для увеличения быстродействия при выполнении некоторых операций. Одна команда из дополнительного набора, как правило, выполняет действие, для которого понадобилась бы небольшая программа, состоящая из команд основного набора. Опять-таки, как правило, одна команда выполняется процессором быстрее, чем заменяющая ее последовательность. Однако в 99% случаев, ничего такого, чего нельзя было бы сделать с помощью основных команд, с помощью команд из дополнительного набора сделать нельзя. Таким образом, упомянутая выше проверка программой поддержки дополнительных наборов команд процессором, должна выполнять очень простую функцию: если, например, процессор поддерживает SSE — значит, считать будем быстро и с помощью команд из набора SSE. Если нет — будем считать медленнее, с помощью команд из основного набора. Корректно написанная программа обязана действовать именно так. Впрочем, сейчас практически никто не проверяет у процессора наличие поддержки MMX, так как все CPU, вышедшие за последние 5 лет, этот набор поддерживают гарантированно. Итак, под «архитектурой» понимается совместимость с определённым набором команд. Такова в настоящее время трактовка понятия «архитектура процессора с точки зрения программиста». В соответствии с требованиями, предъявляемыми к наборам команд, в 90-х г. прошлого века выделялись 2 концепции проектирования микропроцессоров: CISC и RISC. CISC (англ. Complex Instruction Set Computing) — концепция проектирования процессоров, которая характеризуется следующим набором свойств: Нефиксированным значением длины команды. Исполнение операций, таких как загрузка в память, арифметические действия кодируется в одной инструкции. Небольшим числом регистров, каждый из которых выполняет строго определённую функцию. Типичными представителями являются процессоры на основе x86 команд (исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom которые являются гибридными). RISC-архитектура широко используется во многих современных микропроцессорах и микроконтроллерах, выпускаемых различными компаниями. Первые RISC-процессоры, разработанные в Стенфордском и Калифорнийском университетах США в начале 80-х годов, выполняли относительно небольшой набор команд — 50–100 вместо 100–200, выполняемых обычными CISC (Complex Instruction Set computer — компьютер со сложным набором команд) процессорами. Эта особенность определила название данного класса процессоров — RISC (Reduced Insruction Set Computer — компьютер с сокращённым набором команд). Однако в последующих разработках RISC-процессоров набор команд значительно расширен, включая команды обработки чисел с плавающей точкой. В настоящее время определились следующие характерные особенности современных RISC-процессоров: расширенный объём регистровой памяти: от 32 до нескольких сотен регистров общего назначения, входящих в состав микропроцессора; использование в командах обработки данных только регистровой адресации (обращение к памяти используется в командах загрузки и сохранения содержимого регистров, а также в командах управления программой); отказ от аппаратной реализации сложных способов адресации (в общем случае, от косвенной: с постинкрементом или предекрементом, косвенная адресация и др.); фиксированный формат команд (обычно 4 байт) вместо переменного формата (от 1 до 15 байт), характерного для CISC-процессоров; исключение из набора команд, реализующих редко используемые операции, а также команд, не вписывающихся в принятый формат. Преимущественное использование регистровой адресации значительно повышает производительность микропроцессоров. Фиксированный формат команд, отказ от сложных и редко используемых команд и способов адресации существенно упрощает устройство управления, сокращает объём микропрограммной памяти, что позволяет уменьшить размер кристалла RISC-процессоров, снизить их стоимость и повысить тактовую частоту. Введение фиксированного формата команд обеспечивает также более эффективную работу исполнительного конвейера, уменьшает число тактов простоя и ожидания, что даёт дополнительный рост производительности. К числу менее известных, "компромиссных" архитектур относят архитектуру MISC с минимальным набором системы команд и весьма высоким быстродействием и др. Также в попытке достижения компромисса между CISC и RISC были созданы микропроцессоры типа VLIW. Хотя идеи VLIW сформулированы уже давно, до настоящего времени они были известны в основном специалистам в области компьютерных архитектур. Имеющиеся реализации, например, VLIW Multiflow, не получили широкого распространения. Пожалуй, единственными популярными процессорами, архитектура которых близка к VLIW, была линия AP-120B/FPS-164/FPS-264 компании Floating Point Systems, которые в 80-е годы активно применялись при проведении научно-технических расчетов. Команда в этих системах содержала ряд полей, каждое из которых управляло работой отдельного блока процессора, так что все командное слово определяло поведение всех блоков процессора. Однако длина команды в FPS-х64 была равна всего 64 разрядам, что по современным меркам никак нельзя отнести к сверхбольшим. Выделение в архитектуре VLIW компонентов командного слова, управляющих отдельными блоками МП, вводит явный параллелизм на уровень команд. Задача обеспечения эффективного распараллеливания работы отдельных блоков возлагается при этом на компилятор, который должен сгенерировать машинные команды, содержащие явные указания на одновременное исполнение операций в разных блоках. Таким образом, достижение параллелизма, обеспечиваемое в современных суперскалярных RISC-процессоров их аппаратурой, в VLIW возлагается на компилятор. Очевидно, что это вызывает сложные проблемы разработки соответствующих компиляторов. При этом распараллеливание работы между ФУ в EPIC происходит статически при компиляции, в то время как современные суперскалярные RISC-процессоры осуществляют это динамически. Наиболее распространённая архитектура современных настольных, серверных и мобильных процессоров построена по архитектуре Intel x86 (или х86-64 в случае 64-разрядных процессоров). Формально, все х86-процессоры являлись CISC-процессорами, однако новые процессоры, начиная с Intel486DX, являются CISC-процессорами с RISC-ядром. Они непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC. В микропроцессор встраивается аппаратный транслятор, превращающий команды x86 в команды внутреннего RISC-процессора. При этом одна команда x86 может порождать несколько RISC-команд(в случае процессоров типа P6-до 4-х RISC комманд в большинстве случаев). Исполнение команд происходит на суперскалярном конвейере одновременно по несколько штук. Это потребовалось для увеличения скорости обработки CISC-команд, так как известно, что любой CISC-процессор уступает RISC-процессорам по количеству выполняемых операций в секунду. В итоге, такой подход и позволил поднять производительность CPU. 3.4.2 Архитектура как совокупность аппаратных решений, присущих определённой группе процессоров. В рамках данного подхода под архитектурой понимается некий набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет (иначе говоря — «внутренняя конструкция», «организация» этих процессоров). Так, например, любой специалист по x86 CPU вам скажет, что процессор с ALU, работающими на удвоенной частоте, QDR-шиной, Trace cache, и, возможно, поддержкой технологии Hyper-Threading — это «процессор архитектуры NetBurst». А процессоры Intel Pentium Pro, Pentium II и Pentium III — это «архитектура P6 ». «Процессорное ядро» (как правило, для краткости его называют просто «ядро») — это конкретное воплощение [микро]архитектуры (т.е. «архитектуры в аппаратном смысле этого слова»), являющееся стандартом для целой серии процессоров. Например, NetBurst — это микроархитектура, которая лежит в основе многих сегодняшних процессоров Intel: Celeron, Pentium 4, Xeon. Микроархитектура задает общие принципы: длинный конвейер, использование определенной разновидности кэша кода первого уровня (Trace cache), прочие «глобальные» особенности. Ядро — более конкретное воплощение. Например, процессоры микроархитектуры NetBurst с шиной 400 МГц, кэшем второго уровня 256 килобайт, и без поддержки Hyper-Threading — это более-менее полное описание ядра Willamette. А вот ядро Northwood имеет кэш второго уровня уже 512 килобайт, хотя также основано на NetBurst. Ядро AMD Thunderbird основано на микроархитектуре K7, но не поддерживает набор команд SSE, а вот ядро Palomino — уже поддерживает. Таким образом, можно сказать что «ядро» – это конкретное воплощение определенной микроархитектуры «в кремнии», обладающее (в отличие от самой микроархитектуры) определенным набором строго обусловленных характеристик. Микроархитектура — аморфна, она описывает общие принципы построения процессора. Ядро — конкретно, это микроархитектура, «обросшая» всевозможными параметрами и характеристиками. Чрезвычайно редки случаи, когда процессоры сменяли микроархитектуру, сохраняя название. И, наоборот, практически любое наименование процессора хотя бы несколько раз за время своего существования «меняло» ядро. Например, общее название серии процессоров AMD — «Athlon XP» — это одна микроархитектура (K7), но целых четыре ядра (Palomino, Thoroughbred, Barton, Thorton). Разные ядра, построенные на одной микроархитектуре, могут иметь, в том числе разное быстродействие. Ревизия — одна из модификаций ядра, крайне незначительно отличающаяся от предыдущей, почему и не заслуживает звания «нового ядра». Как правило, из выпусков очередной ревизии производители процессоров не делают большого события, это происходит «в рабочем порядке». Так что даже если вы покупаете один и тот же процессор, с полностью аналогичным названием и характеристиками, но с интервалом где-то в полгода — вполне возможно, фактически он будет уже немного другой. Выпуск новой ревизии, как правило, связан с какими-то мелкими усовершенствованиями. Например, удалось чуть-чуть снизить энергопотребление, или понизить напряжение питания, или еще что-то оптимизировать, или была устранена пара мелких ошибок. С точки зрения производительности мы не помним ни одного примера, когда бы одна ревизия ядра отличалась от другой настолько существенно, чтобы об этом имело смысл говорить. Хотя чисто теоретически возможен и такой вариант — например, подвергся оптимизации один из блоков процессора, ответственный за исполнение нескольких команд. Подводя итог, можно сказать что «заморачиваться» ревизиями процессоров чаще всего не стоит: в очень редких случаях изменение ревизии вносит какие-то кардинальные изменения в процессор. Достаточно просто знать, что есть такая штука — исключительно для общего развития.
Дата добавления: 2014-01-06; Просмотров: 943; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |