Существующие проекты представляют из себя гомогенные реакторы (в том числе, на быстрых нейтронах), работающие на смеси расплавов фторидов Li — лития, Be — бериллия, Zr — циркония, U — урана.
Низкое давление в корпусе реактора (0,1 атм) — позволяет использовать очень дешёвый корпус, при этом исключается целый класс аварий с разрывом корпуса и трубопроводов 1-го контура.
Высокие температуры 1-го контура — выше 700 °C, (а в реакторах сверхвысокой температуры выше 1400) и, как следствие, высокий термодинамический КПД (до 44 % для MSBR-1000), что позволяет использовать обычные турбины от тепловых электростанций.
Возможно организовать непрерывную замену горючего, без остановки реактора - вывод продуктов деления из 1-го контура и его подпитку свежим топливом.
Меньший радиоактивный износ материалов конструкции по сравнению с водо-водяными реакторами.
Высокая топливная эффективность.
Возможность построить реактор-размножитель или конвертер.
Возможность использования ториевых топливных циклов, что значительно расширяет и удешевляет топливный цикл.
Фториды металлов, в отличие от жидкого натрия, практически не взаимодействуют с водой и не горят, что исключает целый класс аварий, возможных для жидкометалических реакторов с натриевым теплоносителем.
Возможность вывода ксенона (для исключения отравления реактора) простой продувкой теплоносителя гелием в ГЦН. Как следствие — возможность работать в режимах с постоянным изменением мощности.
Необходимость организовывать переработку топлива на АЭС.
Более высокая коррозия от расплава солей.
Более высокие дозовые затраты при проведении ремонта 1-го контура по сравнению с ВВЭР
Низкий коэффициент воспроизводства (КВ ~ 1,06 для MSBR-1000) по сравнению с жидкометалическими реакторами с натриевым теплоносителем (КВ ~ 1,6 для БН-600, БН-800)
Значительно большие (в 2—3 раза) по сравнению с водо-водяными реакторами выбросы трития, с которыми можно бороться подбором конструкционных материалов трубопроводов 1-го контура.
Отсутствие конструкционных материалов.
Aircraft Reactor Experiment, ARE, 3 МВт, Окриджская Национальная Лаборатория (ORNL) США — построен 1954 г., работал 9 дней.
Molten-Salt Reactor Experiment, MSRE, 8 МВт, Окриджская Национальная Лаборатория (ORNL) США — уран-ториевый реактор-размножитель на тепловых нейтронах с графитовым замедлителем и отражателем, работал 25 000 часов.
Molthen-Salt Breeder Reactor, MSBR-1000, 1000 МВт, Окриджская Национальная Лаборатория (ORNL) США — уран-ториевый реактор-размножитель на тепловых нейтронах с графитовым замедлителем и отражателем. Развитие MSRE — проект коммерческого реактора. Экономическая эффективность примерно соответствует водо-водяным реакторам. Может работать как в режиме конвертера, так и реактора-размножителя.
Denatured Molten-Salt Reactor (with once-through fueling), DMSR-1000, Окриджская Национальная Лаборатория. Проект не был осуществлён[1].
Литература
В.Л.Блинкин, В.М. Новиков Жидкосолевые ядерные реакторы. — М.: Атомиздат, 1978.
Новиков В.М., Игнатьев В.В., Федулов В.И., Чередников В.Н. Жидкосолевые ЯЭУ: перспективы и проблемы, Энергоатомиздат, М., 1990
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление