Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Количественные методы в цитологии




Метод меченых атомов (авторадиография)

Меченые атомы широко применяются в цитологии для изучения разнообразных химических процессов, протекающих в клетке, например: для изучения синтеза белков и нуклеиновых кислот, проницаемости клеточной оболочки, локализации веществ в клетке и т. д.

Для этих целей применяются соединения, в которые введена радиоактивная метка.

В молекуле меченого вещества, например аминокислоты или углевода, один из атомов замещен атомом того же вещества, но обладающим радиоактивностью, т. е. радиоактивным изотопом. Известно, что изотопы одного и того же элемента не отличаются друг от друга по своим химическим свойствам, и, попав в организм животного или растения, они ведут себя во всех процессах так же, как и обычные вещества. Однако благодаря тому, что эти изотопы обладают радиоактивным излучением, их можно легко обнаружить, применяя фотографический метод.

В цитологических исследованиях наиболее широкое распространение получили искусственные радиоактивные изотопы, обладающие мягким излучением, в процессе распада которых образуются электроны с небольшой энергией. К числу таких изотопов относятся: изотоп водорода -- тритий 3Н, изотоп углерода 14С, фосфора 32Р, серы 35S, йода 1311 и других элементов, входящих в состав органических соединений.

Меченые соединения вводятся непосредственно в организм животного или растения, в изолированные из организма клетки, находящиеся в культуре тканей, в клетки простейших и бактерий. Пути введения их в организм различны: многоклеточным животным они вводятся путем инъекции или с пищей, в случае культур клеток и тканей, простейших и бактерии, а также очень мелких многоклеточных организмов меченые соединения вводятся в культуральную среду.

Введенные в организм радиоактивные изотопы активно включаются в обмен веществ. Доза вводимого в организм меченого соединения устанавливается опытным путем и не должна быть слишком большой, чтобы не нарушить нормального обмена веществ вследствие значительного радиоактивного излучения.

Через различные промежутки времени после введения меченых соединений фиксируются кусочки тканей и органов, клетки простейших и бактерий. Наилучшие результаты дает фиксация смесью Карнуа или спиртово-уксусной смесью (3:1). Из фиксированного материала приготовляются обычные парафиновые срезы, на поверхность которых (после удаления парафина) наносится тонкий слой чувствительной фотографической эмульсии. Эта так называемая ядерная эмульсия характеризуется очень мелким размером зерен (0,2-0,3 ж/с), их однородностью и значительно большим насыщением желатины AgBr, чем обычная фотографическая эмульсия.

Препараты с нанесенной на них фотоэмульсией экспонируются в темноте, при относительно низкой температуре (около 4°С), а затем проявляются и закрепляются так же, как при получении обычных фотографий. За время экспонирования препаратов излучение радиоактивных изотопов, включившихся в те или иные структуры клетки, оставляет след от пробега р-частиц в слое фотоэмульсии.

В процессе проявления зерна AgBr, оказавшиеся в местах пробега бетта-частиц, восстанавливаются проявителем до металлического серебра. Последние обладают черным цветом и обнаруживаются после проявления препаратов в виде зерен, находящихся в слое фотоэмульсии над теми клетками и их структурами, в которые оказался включенным радиоактивный изотоп. Такие препараты носят название радиоавтографов.

После процессов проявления и закрепления радиоавтографы тщательно промываются в воде, а затем окрашиваются одним из красителей, выявляющих то вещество в клетке, в которое должен включиться радиоактивный изотоп. Только некоторые виды окраски, например реакция Фельгена, производятся до нанесения эмульсии на радиоавтографы, так как гидролиз в кислоте и при высокой температуре обязательно повредит слой эмульсии. Готовые радиоавтографы заключаются в канадский бальзам и изучаются под микроскопом.

Включение радиоактивных изотопов осуществляется лишь в те участки клеток и их структуры, где происходят активные процессы, например процессы синтеза белков, углеводов, нуклеиновых кислот.

Для исследования синтеза белков используются разнообразные меченые аминокислоты. О синтезе нуклеиновых кислот можно судить по включению в их молекулы меченых нуклеозидов: тимидина, цитидина, уридина. Тимидин, меченный по тритию, т.е. 3Н-тимидин включается исключительно в молекулы ДНК, и с помощью именно этого радиоактивного предшественника в последние годы было выяснено много важных закономерностей синтеза ДНК, удалось проследить редупликацию хромосом. 3Н-цитидин и 3Н-уридин (или эти же соединения, меченные по углероду) включаются как в молекулы ДНК, так и в молекулы РНК. О синтезе полисахаридов в клетке можно судить по включению в них меченых глюкозы и Na2so4.

В последние годы разработан метод получения радиоавтографов для исследования их с помощью электронного микроскопа (электронная авторадиография), что дает возможность изучать биохимические процессы в ультраструктурах клетки, т. е. получать точные данные о локализации химических веществ и их превращений в клетках разных органоидов.

К числу количественных методов относятся прежде всего многочисленные биохимические методы, с помощью которых можно определить количество содержащихся в клетке неорганических и органических веществ.

Ценность этих методов, широко используемых в цитологии, состоит в том, что они позволяют получить данные об изменениях в количестве разнообразных веществ в разные периоды жизнедеятельности клетки, в разные периоды ее развития, при воздействии факторов внешней среды, при патологических процессах и т. д.

Количественные методы дают также возможность получить цифровые данные о веществах, потребляемых и выделяемых клеткой в процессе ее жизнедеятельности. Так, используя специальную аппаратуру (респирометры Варбурга, Крога и др.). можно очень точно учесть количество потребляемого тканями или отдельными клетками кислорода, а также те изменения интенсивности, процессов дыхания, которые происходят при разном температурном режиме и других условиях.

Один из важных количественных методов, дающих возможность определить сухой вес клетки, основан на применении интерференционного микроскопа. Сущность этого метода заключается в том, что в интерференционном микроскопе свет, прошедший через объект, испытывает сдвиг фазы по сравнению с «контрольным лучом», не прошедшим через объект. Величина фазового сдвига выражается в изменении яркости и зависит от плотности объекта, а плотность, в свою очередь, зависит от количества сухого вещества, содержащегося в данном объекте. Сухой вес клеток или их отдельных структур выражается в граммах, и для вычисления его нужно измерить размер клетки (или отдельной её структуры), а также величину фазового сдвига.

Метод определения сухого веса с помощью интерференционного микроскопа применим не только для фиксированных, но и для живых клеток.

Еще один важный и широко используемый метод количественного анализа химического состава клетки -- это цитофотометрия. Основу метода цитофотометрии составляет определение количества химических веществ по поглощению ими ультрафиолетового, видимого или инфракрасного света определенной длины волны.

Количественный анализ можно проводить как на основе собственных спектров поглощения химических веществ (т. е. на неокрашенных препаратах), так и на основе спектров поглощения красителя, которым окрашены структуры клетки. Примером может служить определение количества ДНК на препаратах, окрашенных по Фельгену, и количества РНК после окраски пиронином.

6. Цитофотометрия.

Поглощение света разнообразными клеточными структурами зависит от концентрации в них тех или иных химических веществ, и эта зависимость подчинена закону Ламберта-Бера: интенсивность поглощения лучей пропорциональна концентрации вещества при одной и той же толщине объекта. Различия в интенсивности поглощения света химическими веществами, локализованными в разнообразных клеточных структурах, выражаются количественными показателями, которыми часто служат относительные единицы, микрограммы и другие единицы измерения.

Приборы, служащие для целей спектрального анализа химического состава клеток, носят название цитофотометров. Цитофотометр включает источник света, фильтр, микроскоп и фотометр с фотоумножителем. На фотоумножитель проецируется изображение клетки.

При помощи цитофотометра определяется интенсивность прохождения света через клетку или же величина, обратная ей, т. е. оптическая плотность. Полученные величины сравниваются с такими же величинами, известными для других клеток, или же со стандартными образцами, Цитофотометры различных систем позволяют определять количество вещества до 10-12-14 г, т.е. характеризуются большой точностью измерений.

Метод цитофотометрии получил особенно широкое распространение в последние годы. Большое значение имеет то обстоятельство, что его можно сочетать с другими методами исследования, например с ультрафиолетовой микроскопией.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 2621; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.