Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

II. Аксиомы порядка




I. Аксиомы сложения и умножения

П.1. Действительные числа и координатная прямая

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Из СШ известны следующие обозначения:

N – множество натуральных чисел,

Z – множество целых чисел,

Z0 – множество целых неотрицательных чисел,

Q – множество рациональных чисел,

I – множество иррациональных чисел,

R – множество действительных чисел.

В курсе СШ под действительным числом понимают бесконечную десятичную дробь без 9 в периоде. Если бесконечная десятичная дробь – периодическая, то это рациональное число, а если бесконечная десятичная дробь – непериодическая, то это иррациональное число.

Из курса математики СШ известно, что множество, состоящее и рациональных и иррациональных чисел, называется множеством действительных чисел (R). На множестве R вводятся операции «сложения», «умножения», отношение порядка (сравнение). Формулируются 3 группы аксиом:

1. a + b = b + a

2. a + (b + c)= (a + b) + c

3. a ∙ b = b ∙ a

4. a ∙ (b ∙ c)= (a ∙ b) ∙ c

5. (a + b) ∙ c= a ∙ c + b ∙ c

6. Существует число 0 такое, что а + 0 = а для любого действительного числа а

7. Для любого действительного числа а существует число – а такое, что а + (– а) = 0

8. Существует число 1≠0 такое, что а ∙ 1 = а для любого действительного числа а

9. Для любого действительного числа а ≠0 существует число а –1 такое, что а ∙ а –1 = 1

Для любых

1. Для любых либо, либо.

2. Если, то x=y.

3. Если, то.

4. Если ху, то для любого z выполняется х + zу + z

5. Если ху, то для любого z > 0 выполняется х ∙ zу ∙ z,

а для любого z < 0 выполняется х ∙ zу ∙ z.

III. Аксиома непрерывности. Пусть X и Y два непустых множества действительных чисел. Если выполняется неравенство, то, такое, что.

Все остальные свойства можно получить из этих аксиом.

Такой подход к определению множества действительных чисел называется аксиоматическим, действительные числа – это множество, элементы которого удовлетворяют аксиомам групп I–III.

Между множеством действительных чисел и точками любой прямой можно установить взаимно однозначное соответствие.

Рассмотрим любую прямую и отметим на ней произвольно точку 0 – начало отсчёта. Точка 0 разбивает данную прямую на два луча. Один из них назовём положительным и обозначим стрелкой, а другой отрицательным. От точки 0 отложим на положительном луче произвольный отрезок и назовём его единичным (его длину примем за единицу измерения длин). Из СШ известно, что прямая, с выбранным на ней началом отсчёта 0, положительным направлением и единичным отрезком, называется координатной прямой.

Возьмем произвольное действительное число х. Возможны случаи:

1) x >0. Отложим на положительном луче координатной прямой от точки 0 отрезок длины x. Правый конец полученного отрезка – соответствующая x точка.

2) x <0. Отложим на отрицательном луче координатной прямой от точки 0 отрезок длины (– x). Левый конец полученного отрезка – соответствующая x точка.

3) x =0, соответствующая ему точка – точка 0.

Возьмем произвольную точку х на координатной прямой. Возможны случаи:

1) точка x попала на положительный луч координатной прямой. Тогда ей соответствует число x >0, равное расстоянию от точки 0 до точки x.

2) точка x попала на отрицательный луч координатной прямой. Тогда ей соответствует число x <0, равное расстоянию от точки 0 до точки x, взятому со знаком минус

3) точка x попала в начало атсчета координатной прямой. Тогда ей соответствует число x =0.

Таким образом, установили взаимно однозначное соответствие между множеством действительных чисел и точками координатной прямой. Поэтому в математике принято множество R (действительных чисел) называть числовой прямой, а его элементы, т.е. действительные числа, точками числовой прямой. Часто для наглядности вместо действительного числа х рассматривают ту точку на координатной прямой, которая соответствует этому действительному числу. Эту точку называют геометрическим изображением числа х и обозначают так же через х.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 696; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.