КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Занятие № 3. Рекуперативные теплообменники. Их конструкции
Занятие № 3. Рекуперативные теплообменники. Их конструкции ЛЕКЦИЯ Сферы применения ЭВМ и ВС 1. Автоматизированные системы управления (АСУ), целью создания которых является решение задач управления с помощью ЭВМ при повышении полноты, оперативности и достоверности информации. В зависимости от объекта управления различают: АСУТП (технологические процессы), АСУП (предприятие), АСУТ (транспорт). 2. Роботы и робототехнические устройства (исполнители, имеющие АСУ на базе микроэлементов). Это – станки с ЧПУ (роботы 1 поколения), роботы с гибкой системой восприятия и обратной связью (2 поколения), интеллектуальные роботы, имеющие анализаторы и другие средства искусственного интеллекта (3 поколения). 3. Сети ЭВМ – совокупность ЭВМ и внешних устройств, соединенных каналами связи (телефонными, телеграфными, радио и спутниковыми). Позволяют организовать общий банк данных, электронную почту, разделение работ между ЭВМ. 4. Системы автоматизации проектирования (САПР) – используются для выполнения проектных работ. 5. Автоматизированные рабочие места (АРМ) – создаются на базе ПЭВМ для инженеров, кассиров, брокеров и т. д. 6. решение локальных задач пользователя (вычислительных, экономических и т. д.). 7. Подготовка текстовой информации. 8. Компьютерная графика. 9. Создание компьютерных игр. по учебной дисциплине "Тепло-массообменное оборудование предприятий" (к учебному плану 200__г)
Разработал: к.т.н., доцент Костылева Е.Е.
Обсуждена на заседании кафедры протокол № _____ от "_____" ___________2011 г.
Казань - 2011 г.
Учебные цели: 1. Рассмотреть устройство спирального теплообменника. 2. Изучить устройство и конструкции пластинчатых теплообменных трубчатых аппаратов. 3. Ознакомиться с устройством ребристых теплообменников. Вид занятия: лекция Время проведения: 2 часа Место проведения: ауд. ________ Литература: 1. Тепломассообмен: Учебное пособие для вузов / Ф.Ф. Цветков, Б.А. Григорьев. - 3-е издание. М.: Издательский дом МЭИ, 2006. - 550 с. Учебно-материальное обеспечение: Плакаты, иллюстрирующие учебный материал. Структура лекции и расчет времени:
1. Спиральные теплообменники (рис. 1) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлическими листами, которые служат поверхностью теплообмена. Внутренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования расстояния между спиралями приваривают бобышки. С торцов спирали закрывают крышками и стягивают болтами. Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикальные спиральные теплообменники. Такие теплообменники применяют в качестве конденсаторов и паровых подогревателей для жидкости.
Рис. 1. Типы спиральных теплообменников: а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители
К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объема, чем у многоходовых трубчатых теплообменников) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под избыточным давлении не свыше 1,0 МПа. 2. Пластинчатые теплообменники имеют плоские поверхности теплообмена. Обычно такие теплообменники применяют для теплоносителей, коэффициенты теплоотдачи которых одинаковы. В настоящее время в системах теплоснабжения жилищно-коммунальных хозяйств и ряда промышленных предприятий в качестве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 2) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоятельств и преимуществ: 1. Коэффициент теплопередачи в пластинчатых теплообменниках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков теплоносителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.
Рис. 2. Пластинчатый водоводяной теплообменник «Теплотекс»: а - общий вид; б - схема движения теплоносителей
2. Пластинчатые теплообменники имеют малую металлоемкость, очень компактны, их можно установить в небольшом помещении. 3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопроводов. 4. В пластинчатом теплообменнике можно легко и быстро заменить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка. Недостатки: трудность чистки внутри каналов, ремонта, частичной замены поверхности теплообмена, а также невозможность изготовления пластинчатых теплообменников из чугуна и хрупких материалов и длительная эксплуатация.
3. Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоносителей значительно ниже, чем для второго. Поверхность теплообмена со стороны теплоносителя с низким значением α увеличивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 3). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.
Рис. 3. Типы ребристых теплообменников: а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спиральным оребрением; г - чугунная труба с внутренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусторонним игольчатым оребрением; ж - проволочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - многоребристая трубка Заключение Обобщить изученные вопросы. Подвести итоги лекции. Ответить на вопросы. Выдать задание для самостоятельного изучения – изучить материал лекции по конспекту, рекомендуемую литературу.
Задание для самостоятельного обучения: Тепломассообмен: Учебное пособие для вузов / Ф.Ф. Цветков, Б.А. Григорьев. - 3-е издание. М.: Издательский дом МЭИ, 2006. [66-85]
Кандидат технических наук, доцент Е.Е.Костылева
Дата добавления: 2014-01-06; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |