КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
О конечности симплекс - метода
Пусть ЗЛП является невырожденной. Тогда на каждом шаге симплекс – метода будем иметь . Процесс расчета будет состоять в переходе , где два соседних базиса отличаются лишь одним вектором. Например, переход от к осуществлен введением вектора . При этом линейная форма изменится так: , т.к. и . Таким образом, при переходе от одного опорного плана к другому в невырожденной задаче линейная форма возрастает. Поэтому невозможен возврат к старому опорному плану, т.е. каждый шаг симплекс – метода приводит к новому, ранее не встречавшемуся, опорному плану. И поскольку число опорных планов (вершин многогранного множества ) конечно, то в невырожденной задаче через конечное число шагов либо устанавливается неограниченность линейной формы, либо получается оптимальный план. Пусть ЗЛП является вырожденной. Тогда у вырожденного опорного плана может быть (но не обязательно) и поэтому может быть . Не приведет ли это к бесконечному числу шагов? В силу конечности числа вершин множества это может быть лишь тогда, когда через несколько шагов мы вернемся к исходному базису. Следовательно, должны встречаться цепочки в которых начальное и конечное звенья совпадают, т.е. . Такие цепочки называются циклами. Для них . Но так как любые соседние опорные планы доставляют значение линейной формы , то, очевидно, . Таким образом, цикл означает переход от одного базиса опорного плана к другому базису того же вырожденного опорного плана. Причем, через некоторое число таких переходов имеет место возвращение к ранее встретившемуся базису. В случае образования цикла, т.е. зацикливания, всегда можно выйти из него, специальным образом выбрав «разрешающий элемент».
Дата добавления: 2014-01-06; Просмотров: 477; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |