КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Элементы выпуклого анализа
Приведем некоторые определения и рассмотрим конкретные примеры выпуклых множеств. Мы будем в дальнейшем иметь дело с функциями, определенными на множествах конечномерного евклидова пространства En. Определение 12.1. Множество вида (12.2) называется отрезком, соединяющим точки и , и обозначаемым . Очевидно, при точка X совпадет с одним из концов отрезка (), при – с другим (), а при - с некоторой внутренней точкой отрезка. Определение 12.2. Множество называется выпуклым, если вместе с любыми двумя точками и ему принадлежит и отрезок их соединяющий. Выпуклость множества означает, что из принадлежности и множеству следует, что принадлежит для всех . Очевидно, в выпуклы отрезок, полупрямая, прямая, круг, треугольник, полуплоскость и вся плоскость. Все пространство , очевидно, образует выпуклое множество. Пустое множество и множество, состоящее из одной точки, удобно считать выпуклыми. Теорема 12.1. Теорема Фаркаша. Пусть заданы матрица размерности и вектор . Неравенство выполняется для всех в том и только том случае, если существует вектор такой, что . Д о к а з а т е л ь с т в о. Достаточность. Пусть выполняются соотношения и . Тогда для любого вектора будет . Необходимость. Пусть для всех справедливо . Рассмотрим конус . Если , то теорема доказана. Предположим, что . Множество , по определению 12.2, выпукло и замкнуто, поэтому в силу теоремы отделимости существует вектор такой, что (12.3) для всех . Так как при всех , то из (12.3) получаем, что при всех . Значит . С другой стороны . То есть и так как это имеет место для всех , то . (12.4) Но , поэтому из (12.3) следует . (12.5) Взяв , из (12.4) и (12.5) получаем противоречие условиям теоремы. Замечание. Приведем геометрическое истолкование теоремы Фаркаша. Пусть и . Конус есть совокупность всех векторов , которые образуют с каждым из векторов неострые углы. На рис 12.1 конус заштрихован вертикальными линиями, а конус - горизонтальными. Геометрический смысл теоремы таков. Чтобы для любого вектора угол между и был неострым, необходимо и достаточно, чтобы принадлежал конусу . Рис 12.1 Определение 12.3. Функция , заданная на выпуклом множестве , называется выпуклой, если для любых точек и любого выполняется неравенство (12.6) Функция называется строго выпуклой, если для всех неравенство (12.6) выполняется как строгое. Функция называется сильно выпуклой, если существует такое число, (константа сильной выпуклости), что для всех и любого выполняется неравенство (12.7) Всякая сильно выпуклая функция является строго выпуклой и тем более выпуклой функцией, но не наоборот. Примером выпуклой функции служит квадратичная функция с положительно определенной матрицей. Теорема 12.2. Линейная комбинация с неотрицательными коэффициентами выпуклых на выпуклом множестве функций есть выпуклая функция на данном множестве. Д о к а з а т е л ь с т в о. Пусть функции , определенные на выпуклом множестве , является выпуклым на . Покажем, что функция , (12.8) где выпукла на . Для произвольных точек и из и любого числа имеем . В этой цепочке соотношений первое неравенство справедливо, поскольку функции выпуклые. Полученный результат показывает, что функция , определяемая формулой (12.8) является выпуклой на множестве . Теорема 12.3. Если выпукла на выпуклом множестве , то для любых точек и любых чисел , таких что выполняется неравенство Йенсена . (12.9) Д о к а з а т е л ь с т в о (по индукции). При неравенство (12.9) очевидно. В самом деле, если , то и , т.е. (12.9) выполняется как равенство. Предположим, что (12.9) имеет место для , т.е. для выпуклой комбинации из точек. Покажем, что тогда оно справедливо и для выпуклой комбинации из точек множества , т.е. , . При этом, если , то и в (12.9) очевидно равенство. Если же . То из выпуклости и индуктивного предположения следует . Говорят, что множество удовлетворяет условию регулярности, если для каждого существует точка такая, что , т.е. (12.10) Нетрудно показать, что условию (12.10) эквивалентно другое условие, называемое условием регулярности Слейтера. Теорема 12.4. Если для множества выполняется условие регулярности (12.10), то множество регулярно по Слейтеру, а именно существует точка , в которой все ограничения выполняются строго . (12.11) Д о к а з а т е л ь с т в о. Пусть выполняется условие регулярности (12.10). Выберем точку , являющуюся выпуклой комбинацией точек и, следовательно, принадлежащую . Тогда при любом будем иметь . т.е. . В этой цепочке соотношений первое неравенство справедливо в силу неравенства Йенсена, а второе – поскольку, по крайней мере, один член суммы, а именно строго меньше . Эти неравенства показывают, что для рассматриваемого имеет место условие регулярности Слейтера. Приведем без доказательства следующее важное свойство выпуклых функций. Выпуклая функция , определенная на выпуклом множестве непрерывна в каждой внутренней точке этого множества и имеет в каждой внутренней точке производную по любому направлению . Важное свойство выпуклых дифференцируемых функций, которым мы будем часто пользоваться, устанавливает следующая теорема. Теорема 12.5. Функция , дифференцируемая на выпуклом множестве , выпукла тогда и только тогда, когда для любых и , принадлежащих выполняется неравенство . (12.12) Д о к а з а т е л ь с т в о. Необходимость. Пусть выпукла. Тогда для любых и , () и всех таких, что справедливо неравенство или , откуда Переходя к пределу в последнем неравенстве при , получим . Достаточность. Пусть теперь выполняется условие (12.12) для любых двух точек множества . Тогда для точки при , принадлежащей , справедливы неравенства и . Умножив первое неравенство на , второе - на и сложив полученные неравенства, имеем или, учитывая, что имеем , т.е, что выпуклая функция на множестве . Рассмотрим ряд экстремальных свойств выпуклых функций на выпуклом множестве, играющих существенную роль при решении задачи отыскания точки выпуклого множества , в которой выпуклая функция , определенная на достигает минимального значения: . Теорема 12.6. Любая точка локального минимума функции на выпуклом множестве является точкой глобального минимума Д о к а з а т е л ь с т в о. Пусть - точка локального минимума функции на . Тогда по определению точки локального минимума существует некоторая окрестность этой точки такая, что выполняется неравенство . (12.13) Предположим, что не является точкой глобального минимума функции , то есть что существует точка такая, что . Рассмотрим точки вида . Так как множество выпукло, то . Далее из выпуклости и из предположения о следует . т.е. . Но это противоречит условию, что - точка локального минимума, поскольку при достаточно малых точка находится в окрестности , где имеет место (12.13). Следовательно, - точка глобального минимума на . Теорема 12.7. Множество точек минимума выпуклой функции на выпуклом множестве является выпуклым множеством. Д о к а з а т е л ь с т в о. Пусть - множество точек минимума выпуклой функции на выпуклом множестве , т.е. . Выберем две любые точки и . Поскольку и - выпуклое множество, то для любого будет , а ввиду выпуклости функции имеем То есть . Кроме того, поскольку - минимальное значение функции на , то . А, значит, , т.е. . Следовательно, - выпуклое множество. Теорема 12.8. Строго выпуклая функция на выпуклом множестве достигает своего минимума не более чем в одной точке. Д о к а з а т е л ь с т в о. Пусть - строго выпуклая функция на выпуклом множестве , т.е. для любых и всех выполнятся строгое неравенство . Пусть =. Предположим, что найдется точка , такая, что . Тогда для любого точка принадлежит множеству и в силу строгой выпуклости функции будет т.е. . Это противоречит условию, что - точка минимума. Следовательно, точка единственна.
Дата добавления: 2014-01-06; Просмотров: 1095; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |