КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод Ньютона минимизации функции многих переменных
До сих пор мы рассматривали методы безусловной минимизации первого порядка, для реализации которых использовались лишь первые производные минимизируемой функции. В этих методах для определения направления убывания функции использовалась лишь линейная часть разложения функции в ряд Тэйлора. Если же минимизируемая функция дважды непрерывно дифференцируема, то возможно применение методов минимизации второго порядка, которые используют квадратичную часть разложения этой функции в ряд Тэйлора. Поскольку квадратичная аппроксимация гораздо точнее линейной, естественно ожидать, что методы второго порядка сходятся быстрее, чем методы первого порядка. Опишем метод Ньютона для задачи , где - дважды непрерывно дифференцируемая функция. Пусть известно -е приближение . Разложение функции по формуле Тейлора в окрестности точки можно представить в виде Отсюда видно, что поведение функции с точностью до величин порядка описывается квадратичной функцией (7.1) Очередное -е приближение к точке минимума функции найдем минимизируя ее квадратичную аппроксимацию , т.е. точку найдем как точку минимума функции из условия (7.2) Пусть матрица Гессе положительно определена при всех , следовательно, невырождена ). Тогда существует обратная матрица . Отметим, что квадратичная функция с положительно определенной матрицей сильно выпукла и уравнение (7.2) определяет единственную точку глобального минимума функции . Умножим слева обе части равенства (7.2) на матрицу и найдем точку минимума квадратичной функции (7.1), аппроксимирующей в окрестности точки : (7.3) Итерационный процесс (7.3), начатый из произвольной точки , называется методом Ньютона минимизации функции многих переменных и является обобщением метода Ньютона в одномерном случае. Очевидно, для квадратичной функции с положительно определенной матрицей применение метода Ньютона обеспечивает получение точки глобального минимума ровно за один шаг из любой точки . Для выпуклой функции, отличной от квадратичной, применение этого метода обеспечивает, как правило, быструю сходимость. Дело в том, что на каждом шаге итерационного процесса (7.3) используется информация о поведении функции в окрестности точки , содержащаяся не только в значениях первых, но и вторых ее частных производных. Поэтому при прочих равных условиях следует ожидать более быструю сходимость метода Ньютона по сравнению с градиентными методами. При выборе достаточно хорошего начального приближения минимизирующая последовательность для сильно выпуклой дважды дифференцируемой функции сходится к точке минимума с квадратичной скоростью . Если же точка выбрана недостаточно близкой к точке , то последовательность (7.3) может расходиться. Отметим, что даже сходящаяся последовательность метода Ньютона не всегда обеспечивает монотонное убывание , т.е. неравенство для некоторых может нарушаться. Этот недостаток устранен в обобщенном методе Ньютона: , где величина находится на каждом шаге из условия исчерпывающего спуска по направлению . Недостатком метода Ньютона является необходимость вычисления и обращения матрицы Гессе на каждой итерации. Пример 7.1. Методом Ньютона решить задачу , Градиент , матрица Гессе Найдем обратную матрицу . С помощью формулы (7.3) получаем Так как , то задача решена: . Целевая функция квадратична, поэтому решение задачи получено за одну итерацию. Описанный метод Ньютона может применяться лишь для минимизации функций, у которых матрица вторых частных производных обратима. При этом, как оказывается, обратная матрица должна быть ограничена. Этими свойствами обладают сильно выпуклые дважды непрерывно дифференцируемые функции. Они, как известно, ограничены снизу и у них существует единственная точка минимума . Для таких функций имеет место следующая теорема. Теорема 7.1. Если - дважды непрерывно дифференцируемая функция, удовлетворяющая условиям (7.4) при любых и в методе , выбирается из условия , (7.5) то независимо от выбора начальной точки последовательность сходиться к точке минимума . Д о к а з а т е л ь с т в о. Если , то по теореме о среднем с учетом условия (7.4) получаем Следовательно, Воспользуемся выражением . Умножая это равенство слева на матрицу , получим , следовательно, . Тогда, умножая скалярно обе части последнего равенства на получим . Далее в силу (7.4) имеем и, следовательно, . Нетрудно видеть, что неравенство (7.5) будет обязательно выполняться, если , т.е. если . Тем самым показана обоснованность выбора из условия (7.5). Так как при , то из неравенства (7.6) следует, что при любом . Отсюда с учетом ограниченности снизу вытекает, что при . Теперь из (7.6) нетрудно установить, что при , а в силу того что это означает, что при . Из условия сильной выпуклости следует сходимость последовательности к решению .
Контрольные вопросы 1. К методам какого порядка относится метод Ньютона минимизации функции многих переменных? 2. Дайте определение матрицы Гессе. 3. Что лежит в основе метода Ньютона минимизации функции многих переменных? 4. Опишите метод Ньютона минимизации функции многих переменных? 5. Какой итерационный процесс лежит в основе метода Ньютона минимизации функции многих переменных? 6. Что можно сказать о сходимости минимизирующей последовательности , построенной с помощью метода Ньютона для сильно выпуклой дважды дифференцируемой функции ? 7. В каких случаях последовательность , построенная с помощью метода Ньютона, может расходиться? 8. Опишите обобщенный метод Ньютона минимизации функции многих переменных? 9. Перечислите достоинства и недостатки метода Ньютона минимизации функции многих переменных
Дата добавления: 2014-01-06; Просмотров: 2324; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |