Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Равносильные преобразования. Упрощение формул




Если в равносильные формулы всюду вместо какой-нибудь переменной подставить одну и ту же формулу, то вновь полученные формулы также окажутся равносильными в соответствии с правилом подстановки. Таким способом из каждой равносильности можно получить сколько угодно новых равносильностей.

Пример 1: Если в законе де Моргана вместо Х подставить , а вместо Y подставить , то получим новую равносильность . Справедливость полученной равносильности легко проверить с помощью таблицы истинности.

Если какую-нибудь формулу , являющуюся частью формулы F, заменить формулой , равносильной формуле , то полученная формула окажется равносильной формуле F.

Тогда для формулы из примера 2 можно провести следующие замены:

– закон двойного отрицания;

– закон де Моргана;

– закон двойного отрицания;

– закон ассоциативности;

– закон идемпотентности.

По свойству транзитивности отношения равносильности можем утверждать, что .

Замену одной формулы другой, ей равносильной, называют равносильным преобразованием формулы.

Под упрощением формулы, не содержащей знаков импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая не содержит отрицаний неэлементарных формул (в частности, двойных отрицаний) или содержит в совокупности меньшее число знаков конъюнкции и дизъюнкции, чем исходная.

Пример 2: Упростим формулу .

.

На первом шаге мы применили закон, преобразующий импликацию в дизъюнкцию. На втором шаге применили коммутативный закон. На третьем шаге применили закон идемпотентности. На четвертом – закон де Моргана. И на пятом – закон двойного отрицания.

Замечание 1. Если некоторая формула является тавтологией, то и всякая равносильная ей формула также является тавтологией.

Таким образом, равносильные преобразования можно также применять для доказательства тождественной истинности тех или иных формул. Для этого данную формулу нужно равносильными преобразованиями привести к одной из формул, которые являются тавтологиями.

Замечание 2. Некоторые тавтологии и равносильности объединены в пары (закон противоречия и закон альтернативы, коммутативный, ассоциативный законы и т.д.). В этих соответствиях проявляется так называемый принцип двойственности.

Две формулы, не содержащие знаков импликации и эквиваленции, называются двойственными, если каждую из них можно получить из другой заменой знаков соответственно на .

Принцип двойственности утверждает следующее:

Теорема 2.2: Если две формулы, не содержащие знаков импликации и эквиваленции, равносильны, то и двойственные им формулы также равносильны.

Вопросы для контроля:

1. Равносильные предложения. Равносильные формулы.

2. Свойства отношения равносильности.

3. Равносильные преобразования.

4. Упрощение формул.

5. Применение равносильных преобразований.

6. Принцип двойственности.

Раздел 3. Нормальные формы для формул алгебры высказываний




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 2493; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.