Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Машина Тьюринга (МТ)

Машина Тьюринга (МТ) – это математическая модель идеализированного вычисляемого устройства. Для построения МТ надо задать:

1. Конечный алфавит , где - пустой символ.

2. Конечное множество внутренних состояний .

МТ представляет собой

· Бесконечную ленту, разделенную на ячейки. В каждый момент времени в ячейке записана буква . В процессе работы в ячейку может быть записан другой символ

· По ячейкам передвигается управляющее устройство (УУ). В каждый момент времени оно находится напротив какой-то ячейки и имеет некоторое состояние .

Машина действует дискретно, т. е. в определенные моменты времени.

 

                   

 

Если в какой-то момент времени УУ воспринимает ячейку, содержащую символ и МТ находится в состоянии , то МТ может совершить следующие действия:

1. Стереть символ и записать на его место символ .

2. Переместиться в ячейку слева (Л).

3. Переместиться в ячейку справа (П).

4. Остаться на месте (С).

Эти действия называются программой.

Таким образом, М=<A,Q, П>.

Программу МТ можно представить в виде последовательности команд вида: ,

где D={Л, П, С}. (Л- переход влево, П – переход вправо, С – остаться на месте).

Программу также можно представить в виде таблицы:

  q1 q2 …. qn
a1        
a2        
….      
am        

Пример. МТ добавляет к слову единицу.

     

Программа:

(Если в воспринимаемой ячейке символ , и МТ находится в состоянии q1, то состояние не меняется, символ не меняется, УУ сдвигается вправо).

(Если в воспринимаемой ячейке символ 1, и МТ находится в состоянии q1, то это значит, что УУ находится на начале слова, состояние меняется на q2, символ не меняется, УУ сдвигается вправо).

(Если в воспринимаемой ячейке символ 1, и МТ находится в состоянии q2, то это значит, что УУ передвигается по слову, состояние не меняется, символ не меняется, УУ сдвигается вправо).

(Если в воспринимаемой ячейке символ , и МТ находится в состоянии q2, то это значит, что УУ дошло до конца слова, состояние меняется на заключительное, символ меняется на 1, УУ останавливается).

В виде таблицы эту программу можно записать следующим образом:

  q1 q2
 

 

Конфигурация МТ (машинное слово) – это слово вида , где

p1 – слово в алфавите МТ (может быть пустое),qs – внутреннее состояние М,

ai – воспринимаемый символ,p2 – слово в алфавите МТ. МТ переводит конфигурацию в конфигурацию (), если имеет вид , имеет вид , - одна из команд МТ.

Для рассмотренного выше примера:

1. Команда переводит МТ из конфигурации в конфигурацию

2. Команда переводит МТ из конфигурации в конфигурацию

и т. д.

МТ останавливается при конфигурации , если не существует такой конфигурации , что (т. е. входит в , а среди команд МТ нет такой, которая бы начиналась с ).

Тезис Тьюринга: Любой интуитивный алгоритм может быть реализован с помощью некоторой машины Тьюринга.

 

<== предыдущая лекция | следующая лекция ==>
Уточнение понятия алгоритма | Нормальные алгоритмы Маркова
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 360; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.