КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Исследование физики молнии и молниезащиты с помощью искусственных заряженных аэрозольных облаков
Исследование инициирования и развития разряда в облаках заряженных капель воды (в электрически активных облаках) и нейтрализации облачного заряда необходимо для более глубокого понимания физики разряда молнии, чтобы ответить па такие вопросы как: · где будут происходить разряды внутри грозового облака; · в какой степени облако будет разряжено; · как влияют разрядные процессы в облаке на распространение разряда молнии; · каковы шансы возникновения повторных разрядов и где они могут случиться и т.п. Остаются открытыми важные вопросы: как присутствие крупных облачных капель или другого аэрозоля будет влиять на развитие разрядов внутри облака и как протяженные объемы облачного заряда эффективно нейтрализуются молнией. Без ответа на эти вопросы невозможно продвинуться в создании общей теории разряда молнии и физики грозы. В настоящее время нет единого взгляда па роль развития разрядных процессов в заряженных областях грозового облака на разных этапах возникновения и распространения молнии. Это связано с тем, что представления о разрядных процессах внутри электрически активных облаков во многом основывались на мало информативных для этой цели наземных измерениях электромагнитного излучения разряда, а детали и многие разрядные формы из-за дистанционности в них просто не проявлялись. Еще одна нерешенная проблема — это моделирование процессов формирования восходящей молнии и поражения ею наземных объектов. С достаточной точностью пока так и не установлены очень важные при инженерных приложениях физики молнии и молниезащиты корреляционные зависимости между характеристиками самой главной стадии и между ними и параметрами предшествующей лидерной стадии; · скорости нейтрализации и амплитуды тока главного разряда; · амплитуды тока главной стадии и заряда предшествующего ему нисходящего лидера; · амплитуды тока молнии и его максимальной крутизны и др. Знание этих зависимостей даст возможность гораздо точнее прогнозировать случаи ударов молнии в летательный аппарат в полете и в различные стационарные объекты. Одним из подходов к решению этих проблем является применение искусственных заряженных аэрозольных водных облаков с предельной плотностью заряда, способных инициировать электрические разряды (аналоги разрядов молнии) и подробно исследовать процессы формирования и развития стадий разряда в ситуации, характерной для естественной природной ситуации, в лабораторных условиях. На кафедре техники и электрофизики высоких напряжений Московского энергетического института (технического университета) создан экспериментальный комплекс, предназначенный для создания в воздушной среде протяженных заряженных аэрозольных образований (искусственных электрически активных облаков) с предельной плотностью заряда (до 10-2 —10-3 Кл/м3), обеспечивающей возникновение протяженных электрических разрядов, моделирующих молнию (рис. 9.63). Электрические потенциалы создаваемых облаков достигают нескольких мегавольт и создаются сильные электрические поля (с напряженностью, превышающей 10 кВ/см) в протяженных областях (с линейным размером, составляющим десятки метров). Одно из направлений исследований — физическое моделирование влияния гидрометеоров на условия инициирования и распространения разрядных явлений (молнии) в природных электрически активных облаках и вблизи них. Установлено: если группа модельных гидрометеоров (металлических предметов) с относительно небольшим коэффициентом усиления электрического поля располагается недалеко от границ облака или в промежутке между облаком и заземленной плоскостью, она может способствовать инициированию разряда и/или его дальнейшему распространению (рис. 9.64). Рис. 9.63. Искусственное облако заряжен ним) водного аэрозоля и электрические искровые разряды, инициированные с заземленного электрода Рис. 9.64. Группа изолированных цилиндрических проводящих гидрометров инициирует и «направляет» разряд между искусственным обликом заряженного аэрозоля и землей Это коррелируется с реальными грозовыми условиями как по напряженности облачных электрических полей, так и по размерам и виду гидрометеоров. При этом инициирование и развитие разряда из облака заряженного аэрозоля проходит в намного более стабильной форме в присутствии групп модельных гидрометеоров, чем без них Экспериментальные исследования процессов формирования и распространения главной (финальной) стадии разряда из облака показали явно выраженную тенденцию роста амплитуды тока финальной стадии разряда с возрастанием средней скорости продвижения предшествующего ей лидерного процесса (рис. 9.65). Одним из направлений при экспериментальном определении вероятности поражения объектов разрядом молнии может являться использование искусственных сильно заряженных аэрозольных водных облаков. Существующие методы создания искусственных заряженных аэрозольных облаков позволяют создавать облака объемом до десятков кубических метров и потенциалом в несколько мегавольт. Это открывает новые возможности при экспериментальном моделировании процесса поражения объекта молнией: во-первых, существенно приближает физическое моделирование процесса поражения молнией наземных объектов к естественной грозовой обстановке; во-вторых, значительно упрощает экспериментальное моделирование процесса поражения молнией наземных объектов и дает возможность получать достаточный для анализа статистический материал.
Рис. 9.65. Зависимость амплитуды тока финальной стадии разряда от скорости распространения предшествующего лидера
При исследовании процессов поражения разрядом из искусственного облака моделей сосредоточенных объектов установлено, что возникновение и распространение восходящего встречного лидерного разряда с вершины модели молниеотвода в большинстве случаев подавляет развитие лидера с модели защищаемого объекта, на котором наблюдается только слабая корона (рис. 9. 66)
а) б)
Рис. 9.66. Поражение модели молниеотвода разрядом из искусственного облака заряженного водного аэрозоля: а – фотография; б — развертка процесса поражения программируемой электронно-оптической камерой (размер кадра 70x70 см2, длительность экспозиции кадра 0,6 мкс, пауза между кадрами 0,2 мкс)
Рис. 9.67. Зависимость поражения разрядам первого модельного фазного провода от угла защиты модельного грозозащитного троса
На основе проведенных экспериментов (около 10 тыс. разрядов) для модельной линии электропередачи зависимость вероятности поражения крайнего провода от угла защиты а грозозащитного троса показана на рис. 9.67 (кривая 1). Зависимость вероятности прорыва молнии через тросовую защиту к фазному проводу линии электропередачи, рассчитанная по эмпирическому соотношению в масштабе 1:100, представлена кривой 2. Как видно, вероятность, полученная в эксперименте, существенно отличается от расчетной. Когда угол а превышал 28º, в экспериментах наблюдалось резкое увеличение вероятности поражения разрядом из облака модельного фазного провода Фактически угол защиты 25 —40º является критическим с точки зрения резкого роста вероятности возникновения восходящих встречных разрядов на фазных проводах линии электропередачи. Возможно, в этом случае условия для старта восходящего искрового разряда с фазного провода создаются в момент, когда коронный разряд присутствует на молниезащитном тросе, экранируя его и задерживая момент возникновения восходящего разряда на молниезащитном тросе. Таким образом, применение искусственных заряженных аэрозольных облаков открывает новые возможности для оценки вероятностей прорыва молнии в зоны защиты молниеотводов. Глава десятая
Дата добавления: 2014-01-06; Просмотров: 794; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |