КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стандартизированные параметры тока молнии
Воздействие электромагнитного поля молнии на линии электропередачи или сооружения Рассматриваемое воздействие имеет важное значение для распределительных линий низкого и среднего напряжения, поскольку на таких линиях возможно возникновение пробоев изоляции, вызванных индуцированными грозовыми перенапряжениями. Результатом индуцированных перенапряжений является бегущий импульс тока и напряжения, распространяющийся по пинии подобно импульсам, вызванным прямыми ударами молнии в ВЛ. Амплитуда импульса напрямую зависит от расстояния от места удара молнии в землю до линии, возрастает при увеличении высоты линии и заметно уменьшается вследствие экранирования заземленными молниезащитными тросами, если они имеются. На линиях среднего и низкого напряжения амплитуда бегущего импульса часто превышает напряжение пробоя изоляции, что вызывает ее пробой и срез импульса. В месте ВЛ, ближайшем к месту удара молнии, фронт импульса имеет такой же вид, как и при прямом ударе молнии, в то время как длительность импульса волны заметно меньше и составляет 5-10 мкс. Выводы по поводу искажения формы импульса импульсной короной и пробоями изоляции, сделанные применительно к прямому попаданию молнии в провода ВЛ и обратным перекрытиям, одинаково применимы и к данному случаю. Если сооружение имеет меньшие размеры (длину), чем ВЛ, то и запасаемая им электромагнитная энергия будет меньше. Возмущение же, переданное от сооружения к оборудованию, присоединенному или расположенному в непосредственной близости от сооружения, будет меньше, чем при прямом воздействии поля тока молнии. В этом случае сооружение выступает в роли экрана для излучаемого поля.
В стандарте МЭК 61312-1 приведены нормированные параметры импульса тока молнии (рис. 1.8 и табл. 1.3-1.5). Средний ток приблизительно равен . Удары молнии в молниеприемники на территории энергообъекта, как правило, вызывают нарушения в работе автоматизированных систем технического управления
Рис. 1.8. Форма импульса тока молнии и поражающие факторы тока молнии: - удельная энергия; - крутизна тока; - заряд; - максимальный ток
Таблица 1.3. Параметры первого импульса тока молнии, развивающейся с положительно заряженного облака
Таблица 1.4. Параметры второго импульса тока молнии, развивающейся с отрицательно заряженного облака
Таблица 1.5. Параметры постоянной составляющей тока молния
электротехническими объектами: повреждения кабелей и элементов устройств, нарушение функционирования отдельных устройств. Анализ таких случаев на действующих.подстанциях и электростанциях показал, что при ударах молнии в молниеприемники, расположенные вблизи кабельных каналов или лотков, происходит пробой изоляции кабелей с земли. В результате перекрытия изоляции импульс перенапряжения распространяется по вторичным цепям системы (например, цепям оперативного тока), вызывая повреждение отдельных элементов устройств. Амплитудно-частотные характеристики импульсных помех, возникающих в кабелях, изменяются в широком диапазоне и зависят от параметров тока молнии, трассы и длины кабелей, нагрузки на концах кабелей. Частотный спектр изменяется от десятков килогерц до нескольких мегагерц. Амплитуда импульсных помех может находиться в пределах от десятков вольт до десятков киловольт. При ударах молнии в территорию энергообъекта представляют опасность следующие воздействия: · непосредственное попадание в оборудование высокого напряжения и здания; · воздействие на автоматические и автоматизированные системы технологического управления электротехническими объектами импульсных магнитных полей от тока молнии; · перекрытие с заземляющего устройства через грунт на кабели автоматической и автоматизированной системы технологического управления электротехническими объектами; · перекрытие с поверхности земли на жилы кабелей; · обратное перекрытие с молниеприемника на первичное оборудование; · индуцирование импульсных перенапряжений в цепях вторичной коммутации. На рис. 1.9 дана иллюстрация воздействий молнии на энергообъект, а в табл. 1.6 приведены их некоторые характеристики. Непосредственное попадание молнии в оборудование высокого напряжения и здания исключается при правильном выборе зон защиты молниеприемников.
Рис 1.9. Возможные воздействия молнии: - непосредственный удар; - удаленный разряд; - шина выравнивания потенциалов; - сопротивление заземления (0,5-10 Ом); - пени, образованная проводами; - разряд между облаками; 1 - защищаемый объект; 2 - часть защищаемого устройства; 3 - трансформаторная подстанция; 4 - кабель линий управления, связи; 5 - кабель низкого напряжения; 6 – ВЛ
Таблица 1.6. Характеристики воздействия молнии на объекты
При определении типа и мест размещения молниеприемников (стержневой, тросовый или сетка на здании), а также токоотводов и заземления молниеприемника необходимо рассчитывать не только зоны защиты от прямого удара молнии, но и уровни воздействий на автоматические и автоматизированные системы технологического управления электротехническими объектами. Рассмотрим ситуацию при ударе молнии в стержневой молниеприемник, расположенный вблизи кабельного канала. Сопротивление растеканию импульса тока молнии (первый импульс 100 кА, 10/350 мкc) может составлять от единиц до десятков ом в зависимости от удельного сопротивления грунта. При этом потенциал молниеприемника при ударе молнии составит от сотен киловольт до нескольких мегавольт. Средняя напряженность пробоя в грунте обычно принимается кВ/м. Исходя из этих данных минимально допустимое расстояние от молниеприемника или от его заземляющего устройства до кабельного канала по условию пробоя в грунте составит:
м.
При ударе молнии в молниеприемники, расположенные ближе указанных расстояний до кабельных каналов, с большой вероятностью произойдет перекрытие с заземляющего устройства молниеотвода на кабели. Минимальное расстояние от токоотводов молниеприемника до места размещения автоматических и автоматизированных систем технологического управления электротехническими объектами определяется также из условия
,
где - ток; - допустимая напряженность импульсного магнитного поля для рассматриваемых систем. Учитывая, что автоматические и автоматизированные системы технологического управления электротехническими объектами установлены в железобетонных зданиях и в металлических шкафах, вводят коэффициент ослабления магнитного поля, обусловленного этими конструкциями. Для импульсных полей тока молнии указанный коэффициент для зданий и шкафов, в которых размещаются автоматические и автоматизированные системы технологического управления электротехническими объектами, как правило, более 10. Расчет наведенных в кабелях импульсных напряжений обычно производят с использованием специальных программ. Наведенные напряжения зависят от длины, типа и трассы прокладки кабелей, а также от расстояния между молниеприемником и кабельным каналом. Так, например, на неэкранированном кабеле длиной 100 м, лежащем на поверхности земли на расстоянии 10 м от молниеприемника, индуцируется напряжение около 60 кВ при ударе молнии (при втором импульсе тока 25 кА, длительности фронта 0,25 мкс). Пробивное напряжение для воздуха в условиях неравномерного импульсного поля кВ/м. Максимальный потенциал на молниеприемнике , где - импульсное сопротивление заземлителя, а - падение напряжения на молниеотводе. Тогда допустимое расстояние от первичных цепей до молниеприемника можно оценить по формуле .
Дата добавления: 2014-01-06; Просмотров: 788; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |