КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Механические колебания
Общие сведения о колебаниях КОЛЕБАНИЯ И ВОЛНЫ
Колебаниями называют периодические движения, совершаемые системой относительно некоторого среднего значения. В зависимости от физической природы повторяющихся процессов различают механические колебания - колебания маятников, струн и т.д., электромагнитные колебания - колебания напряженностей электрических и магнитных полей в колебательном контуре и другие виды колебаний. Колебания различной природы подчиняются одинаковым закономерностям. Колебания лежат в основе многих физический явлении и технических процессов. В зависимости от характера воздействия на систему различают собственные (незатухающие) колебания, свободные, вынужденные и др. Простейшими являются гармонические колебания, т.е. такие, при которых колеблющаяся величина изменяется по закону синуса или косинуса. Их и будем рассматривать в дальнейшем.
Наиболее простым видом гармонических колебаний являются колебания математического маятника (Рис. 25.1) - колебания материальной точки, подвешенной на невесомой нити. Если вывести тело из состояния равновесия, то возникает результирующая сила
Для малых углов отклонения
где
Величина Еще одним видом гармонических колебаний является колебание физического маятника - колебания тяжелого тела, колеблющегося вокруг оси, не проходящей через центр тяжести (Рис.25.3). Если центр тяжести расположен на расстоянии l от оси вращения в т.А, то момент силы тяжести равен: M=mglsinφ Этот момент заставляет отклоненный маятник вернуться в исходное состояние, поэтому уравнение его движения будет:
где I - момент инерции маятника относительно оси вращения. Для малых отклонений
Как видно, во всех случаях гармонические колебания описываются уравнением одного вида (25.2), (25.4), (25.7). Решением такого уравнения является функция:
A=xmax называют амплитудой колебания, Амплитуда и начальная фаза определяются начальными условиями - значениями смещения и скорости при t=0:x=x0, V=V0, где Т.к. гармонические колебания представляют периодический процесс о периодом Т, а период косинуса равен 2π, то из (25.9) находим:
С учетом этого из (25.3), (25.5), (25.8) находим периоды рассмотренных колебаний: для математического маятника - пружинного - физического -
Дата добавления: 2014-01-06; Просмотров: 282; Нарушение авторских прав?; Мы поможем в написании вашей работы! |