КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Влияние пространственного заряда на автоэлектронную эмиссию
Впервые вопрос о возможном влиянии пространственного заряда на автоэлектронную эмиссию был поднят вскоре после установления основного уравнения автоэлектронной эмиссии в работе Штерна, Госслинга и Фаулера. Из уравнения Пуассона для распределения потенциала между бесконечными плоскими электродами следует , (11.45) где U потенциал; х координата; k = 2p(2 me / e)1/2; j плотность тока. Решение этого уравнения с граничными условиями , (11.46) характерными для термоэлектронной эмиссии, приводит к известной формуле БогуславскогоЛенгмюра (11.29) Для автоэлектронной эмиссии напряженность поля Е у поверхности эмиттера отлична от нуля и граничные условия (11.46) переходят в (11.47) Интегрируя (11.45) с учетом граничных условий (11.47), можно получить соотношение между напряженностью электрического поля, плотностью тока и потенциалом: . (E = (U a/ d) [1 16/3p(2 me / e)1/2 jU a1/2/ E 2]) (11.48) Так как без учета пространственного заряда E = U a/ d то критерий малости влияния этого заряда согласно (11.48) может быть записан в виде . (16/3p(me /2 e)1/2 jd / U a3/2<< 1) (11.49) Правомерность выбранного одномерного приближения для реальной конфигурации диода с острийным катодом обосновывается тем, что пространственный заряд, оказывающий влияние на поле вблизи эмиттирующей поверхности, можно считать сосредоточенным на очень малом расстоянии от катода. Решая (11.48) совместно с уравнением ФаулераНордгейма j = АE 2ехр ( В / E), (11.50) где А = 1,54 × 106/j; В = 6,83 × 107× j3/2J(у), и исключая из (11.48) и (11.50) плотность тока j, можно получить выражение, связывающее напряженность поля Е с потенциалом U: 4 kAU а3/2ехр ( B / E) 3 U а = 9 k 2 A 2 E 2 d 2exp (2 B / E) 3 Ed. (11.51) Совместно с (11.50) оно позволяет для ряда фиксированных значений Е рассчитать плотность тока в зависимости от приложенного напряжения. При малых Е из (11.51) следует обычная связь поля и потенциала при нулевом токе (E = U a/ d). При очень больших Е преобладающими становятся экспоненциальные члены и, как нетрудно видеть, (11.51) сводится к уравнению (11.29). Параметр d выбирается равным 1/b, где b геометрический фактор, связывающий напряженность поля с потенциалом для плотностей тока, при которых влиянием пространственного заряда можно пренебречь. На рис 11.7 приведен график зависимости плотности эмиссионного тока от напряжения. Кривая АСЕ рассчитана согласно (11.50) в отсутствие пространственного заряда; кривая ACD построена на основании уравнений (11.50) и (11.51) с учетом пространственного заряда, кривая BD представляет закон БогуславскогоЛенгмюра (11.29). Как можно видеть, при малых U начальный участок кривой совпадает с прямой ФаулераНордгейма. При увеличении U кривая начинает отклоняться вниз и, наконец, асимптотически приближается к кривой БогуславскогоЛенгмюра. Рис 11.7. Теоретическая зависимость плотности тока автоэмиссии от приложенного напряжения.
Дата добавления: 2014-01-06; Просмотров: 512; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |