КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Закон Амдала и его следствия
Использование параллельных вычислительных систем Кластерный подход к созданию параллельных систем
Кластерный подход означает объединение ряда процессоров или SMP-систем вместе с помощью стандартных межсоединений в единую машину. Топологии межсоединений в кластерных системах обладают большим разнообразием. На рис. приведен пример топологии «звезда»: у узлов имеется единственное соединение с общим коммутатором.
Рис. Топология кластерной системы «звезда»
Так как каждая машина в кластере имеет собственное адресное пространство, независимое от других машин, любой доступ к данным, находящимся на удаленном узле, должен осуществляться при взаимодействии с процессором на этом узле через какой-либо протокол обмена. Машины с распределенной памятью в целом признаются требующими от программиста проведения более сложной работы.
Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностями их использования.
Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, где 0<=f<=1. Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f=1) программам. Для того, чтобы оценить, какое ускорение S может быть получено на компьютере из 'p' процессоров при данном значении f, можно воспользоваться законом Амдала:
Пример. Если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (ясно, что 10 получается только в том случае, когда время исполнения параллельной части равно 0).
Посмотрим на проблему с другой стороны: какую часть кода надо ускорить (а значит и предварительно исследовать), чтобы получить заданное ускорение? Ответ можно найти в следствии из закона Амдала: для того чтобы ускорить выполнение программы в q раз необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q)-ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем на 99% кода, что почти всегда составляет значительную часть программы!
Отсюда первый вывод - прежде, чем основательно переделывать код для перехода на параллельный компьютер (а любой суперкомпьютер, в частности, является таковым), надо основательно подумать. Если оценив заложенный в программе алгоритм вы поняли, что доля последовательных операций велика, то на значительное ускорение рассчитывать явно не приходится и нужно думать о замене отдельных компонент алгоритма.
Рис. Зависимость прироста производительности от количества процессоров. С - доля последовательных операций
Рис. Зависимость прироста производительности от доли последовательных операций
В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы n чисел:
s = 0 Do i = 1, n s = s + a(i) End Do
По своей природе он строго последователен, так как на i-й итерации цикла требуется результат с (i-1)-й и все итерации выполняются одна за одной. Имеем 100% последовательных операций, а значит и никакого эффекта от использования параллельных компьютеров. Вместе с тем, выход очевиден. Поскольку в большинстве реальных программ нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: a(1)+a(2), a(3)+a(4), a(5)+a(6) и т.д. Заметим, что при такой схеме все пары можно складывать одновременно! На следующих шагах будем действовать абсолютно аналогично, получив вариант параллельного алгоритма.
Дата добавления: 2014-01-06; Просмотров: 477; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |