Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

И коррекция телевизионных сигналов




ЛЕКЦИЯ 12. МЕТОДЫ ПОВЫШЕНИЯ КАЧЕСТВА ИЗОБРАЖЕНИЯ В ТЕЛЕВИЗИОННЫХ СИСТЕМАХ

Представлены различные методы повышения качества изображения в ТВ системах, в частности путем пространственно-частотной фильтрации, с помощью точечных операций и др. Также рассмотрена коррекция ТВ сигналов (а пертурная коррекция, гамма-коррекция).

 

Литература [1, 5-7, 14, 16-18].

 

Ключевые термины: Качество изображения. Пространственно-частотная фильтрация. Метод точечных операций. Оконтуривание изображений. Метод псевдоцвета. Коррекция ТВ сигналов. Апертурная коррекция. Гамма-коррекция. Низко и высокочастотная коррекция. Кросс-колор. Корректор перекрестных искажений.

12.1 Повышение качества изображения в телевизионных
системах

 

Цель процесса повышения качества изображения состоит в том, чтобы изображение визуально выглядело лучше. Методы, применяемые для повышения качества изображений, оказываются весьма разнообразными. Субъективные суждения о том, что изображение «выглядит лучше», связаны также с критериями, зависящими от предназначения изображения (изображение должно «выглядеть лучше» применительно к определенной задаче). Если использование изображения связано с точным анализом или количественными измерениями, то радикальные операции, приводящие к значительному изменению пространственных или яркостных соотношений в изображении, могут оказаться неприемлемыми. С другой стороны, если изображение применяется только для субъективных целей, то допустимы операции, существенно изменяющие пространственные или яркостные соотношения или же и те и другие, но в целом улучшающие субъективное восприятие изображения. Следовательно, для повышения качества изображения можно применять широкий круг методов; пригодность каждого из них зависит от целей повышения качества данного изображения.

Повышение качества изображения путем пространственно-частотной фильтрации. Для улучшения изображений часто используется пространственно-частотная фильтрация. Если даже снимок не имеет явных дефектов, можно применить фильтр с небольшим подъемом характеристики на верхних частотах, и снимок будет выглядеть более резким. Столь же полезна режекция постоянной составляющей, когда подавляются или ослабляются некоторые (или все) составляющие, расположенные вблизи нулевой частоты. В результате снижается насыщенность больших черных и белых пятен, а изменение масштабов яркости улучшает различимость мелких деталей.

Особенно интересный метод повышения качества основан на мультипликативной модели формирования изображения в сочетании с гомоморфной фильтрацией. Согласно законам поверхностного отражения, изображение образуется из двух компонент:

(12.1.1)

где i’ - распределение освещающего пучка, а r - коэффициент отражения освещаемого объекта.

Как правило, освещающая компонента образуется из низкочастотных пространственных составляющих, для которых коэффициент отражения приближается к зеркальному и богат деталями. Если прологарифмировать выражение (12.1.1)

 

то связь между коэффициентом отражения, освещением и изображением будет выражаться не произведением, а суммой. При фильтрации логарифма изображения режекторным фильтром, настроенным на нулевую частоту, освещающая компонента будет подавлена, а связанный с этим подъем высоких частот улучшит различимость мелкомасштабных элементов. При потенцировании сигнал возвращается в пространство яркостей и образуется изображение, не содержащее отрицательных яркостей. Заметим также, что логарифмирование обусловливает фильтрацию в пространстве плотностей пленки; это является еще одним доводом, дополняющим соображения о предпочтительности обработки в пространстве плотностей, высказанные ранее в разделе о восстановлении изображений.

Повышение качества изображений с помощью точечных операций. Метод повышения качества изображений, основанный на пространственно-частотной фильтрации, можно противопоставить другим методам, в которых воздействие не распространяется на некоторую область (как для свертки), а все операции являются точечными изображения преобразуются в точки нового изображения независимо друг от друга. Точечные операции можно сгруппировать следующим образом.

Преобразования контрастности. Улучшение изображения происходит за счет изменения его контрастности, что достигается нелинейным преобразованием яркостей. Если, например, корректируемое изображение содержит участки, недодержанные при съемке, то можно воспользоваться преобразованием, «растягивающим» область малых яркостей и переводящим ее в интервал яркостей, более удобных для зрения. Наглядными примерами, в которых требуется подобное преобразование, служат операции коррекции неправильно экспонированных пленок, а так же линеаризации характеристик устройств демонстрации изображения, рассмотренные в первом разделе.

Улучшение на основе статистических данных. Выбор закона преобразования контрастности можно частично автоматизировать, воспользовавшись для подбора его параметров статистическими характеристиками изображения (например, средним значением или дисперсией яркости). Предельным случаем является метод выравнивания гистограмм. В теории информации показано, что равномерная гистограмма соответствует сообщению с максимальной информацией. Поэтому, если гистограмма квантованного изображения (дающая число отсчетов, попадающих на каждый из уровней квантования) после преобразования контраста становится равномерной (т.е. все уровни квантования проявляются с равной вероятностью), то изображение должно содержать максимальное количество информации. Данный метод обычно дает наилучшие результаты при квантовании яркостных изображений, гистограммы которых, как правило, отличаются наибольшей неравномерностью. В результате можно довольно просто получить значительное улучшение изображения.

Оконтуривание (препарирование) изображений. При использовании всех рассмотренных методов решается задача повышения качества изображения без существенного его изменения. Если же цель обработки состоит в том, чтобы облегчить восприятие определенной информации, то очень часто применяют методы оконтурирования, когда возможно заметное искажение яркостных и (или) пространственных соотношений.

Рис. 12.1. Блок-схема устройства отображения, обеспечивающего поточечное улучшение изображении с непосредственным участием оператора.  
Наиболее распространенным является метод псевдоцвета, в котором различным яркостям произвольно сопоставляют разные цвета. Демонстрируемое изображение будет содержать отчетливые контуры, проходящие по границам цветных полос. В результате может либо произойти четкое выделение важных деталей, либо получиться обманчивое смешение пятен, скрывающее изображение, либо образоваться забавная цветная картинка, ничего не выделяющая и ничего не скрывающая. В другом методе производится оконтуривание границами черного и белого цвета путем уменьшения числа уровней квантования (обычно до 10 и менее). Отбрасывание от одного до трех старших разрядов также создает контуры, причем картина, получаемая при выделении деталей таким образом, может оказаться очень живописной.

Весьма интересными применительно к точечным операциям повышения качества изображений являются последние образцы цифровых устройств отображения информации, позволяющие оперативно корректировать изображение. С помощью быстродействующих постоянных запоминающих устройств (ПЗУ) удается изменять яркости точек изображения при передаче их из ЗУ на электронно-лучевую трубку. Исходное же изображение, записанное на диски, при этом остается неизменным. Таким образом, загрузив в ПЗУ различные функции, описывающие закон изменения яркостей, можно очень быстро переходить от одного способа преобразования яркости к другому.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 659; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.